Homological invariants of ternary graphs

Thiago Holleben

Dalhousie University

March 31, 2023

Independence Complexes

Given a graph G = (V, E), we define its edge ideal

$$I(G) := (x_i x_j | \{i, j\} \in E)$$

and given a simplicial complex Δ , we define its Stanley-Reisner ideal

$$I_{\Delta} := (x_{i_1} \dots x_{i_s} | \{i_1, \dots, i_s\} \notin \Delta)$$

Given a graph G = (V, E), we define its edge ideal

$$I(G) := (x_i x_j | \{i, j\} \in E)$$

and given a simplicial complex Δ , we define its Stanley-Reisner ideal

$$I_{\Delta} := (x_{i_1} \dots x_{i_s} | \{i_1, \dots, i_s\} \notin \Delta)$$

Theorem (Hochster's formula)

Let Δ be a simplicial complex. Then

$$b_{i,x_{\tau}}(I_{\Delta}) = \dim \tilde{H}_{|\tau|-i-2}(\Delta_{\tau};k)$$

where Δ_{τ} is the restriction of Δ

Let $S = k[x_1, ..., x_n]$, I(G) the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ .

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex Ind(G) if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

Let $S = k[x_1, ..., x_n]$, I(G) the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ .

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex Ind(G) if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

Useful facts

- If G has an isolated vertex, Ind(G) is a cone.
- $I(G) = I_{Ind(G)}$

Independence complexes

Let G be a graph without isolated vertices. An edge covering of G is a set of edges T such that every vertex is an endpoint of an edge of T.

Edge covering complex

The vertices of EC_G are the edges of G. The minimal nonfaces of the simplicial complex EC_G are the minimal edge coverings of G.

Let G be a graph without isolated vertices. An edge covering of G is a set of edges T such that every vertex is an endpoint of an edge of T.

Edge covering complex

The vertices of EC_G are the edges of G. The minimal nonfaces of the simplicial complex EC_G are the minimal edge coverings of G.

Another useful fact

Let $\Theta_{< m}$ be the restriction of the Taylor complex of I(G) to $m = \prod_{v \in V} x_v$. Then

$$\Theta_{< m} \cong EC_G.$$

In particular, EC_G is contractible if and only if Ind(G) is contractible

Edge covering complexes

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3.

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3.

A ternary graph with a non-induced 9-cycle

Theorem (J. Kim, 2022)

A graph is ternary if and only if Ind(G) is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

Theorem (J. Kim, 2022)

A graph is ternary if and only if Ind(G) is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

Corollary

The betti table of the edge ideal of a ternary graph does not depend on the characteristic of the base field.

Let G be a ternary graph.

• When is Ind(G) contractible?

- Let G be a ternary graph.
 - When is Ind(G) contractible?
 - When Ind(G) is not contractible, what is the dimension of the sphere Ind(G) is homotopy equivalent to?

- Let G be a ternary graph.
 - When is Ind(G) contractible?
 - When Ind(G) is not contractible, what is the dimension of the sphere Ind(G) is homotopy equivalent to?
 - Can we describe projective dimension, depth and regularity of S/I(G) in terms of G? (these invariants are characteristic-free)

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X] = \bigcup_{v \in X} N(v) \bigcup_{v \in X} v.$

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X] = \bigcup_{v \in X} N(v) \bigcup_{v \in X} v.$

Let G be a graph, $X, Y \subset V(G)$ such that X is independent and $X \cap Y = \emptyset$. We denote by G(X|Y) the graph G - N[X] - Y.

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X] = \bigcup_{v \in X} N(v) \bigcup_{v \in X} v.$

Let G be a graph, $X, Y \subset V(G)$ such that X is independent and $X \cap Y = \emptyset$. We denote by G(X|Y) the graph G - N[X] - Y.

One way to think about Ind(G(X|Y)) is: "the faces of Ind(G) that contain X and are disjoint from Y.

Theorem (M. Marietti and D. Testa, 2008)

Let G be a forest. Then Ind(G) is either contractible or homotopy equivalent to $S^{\gamma(G)-1}$, where $\gamma(G) = min\{|S| \mid S \subset V(G), N[S] = V(G)\}$ is called the lower dominating number of G.

Lemma

Let F be a forest and v a vertex adjacent to a leaf u. Then

 $\operatorname{Ind}(F) \cong \operatorname{Ind}(F(v|\emptyset))$

A *leaf-filtration* \mathcal{F} of F is a sequence of induced subgraphs of F:

$$\mathcal{F}: \mathcal{F} = \mathcal{F}_0 \supset \mathcal{F}_1 \supset \cdots \supset \mathcal{F}_{q-1} \supset \mathcal{F}_q$$

where for i = 1, ..., q - 1 we have $F_i = F_{i-1}(v_{i-1}|\emptyset)$, where v_{i-1} is adjacent to a leaf of F_{i-1} .

A *leaf-filtration* \mathcal{F} of F is a sequence of induced subgraphs of F:

$$\mathcal{F}: \mathcal{F} = \mathcal{F}_0 \supset \mathcal{F}_1 \supset \cdots \supset \mathcal{F}_{q-1} \supset \mathcal{F}_q$$

where for i = 1, ..., q - 1 we have $F_i = F_{i-1}(v_{i-1}|\emptyset)$, where v_{i-1} is adjacent to a leaf of F_{i-1} .

Note that Ind(F) is contractible if and only if $Ind(F_i)$ is contractible for i = 0, ..., q.

The following sequence of graphs is a leaf-filtration of the graph G below

 $G = G(\emptyset|\emptyset), G(b|\emptyset), G(b, e|\emptyset), G(b, e, k|\emptyset), G(b, e, k, m|\emptyset), G(b, e, k, m, h|\emptyset) = \emptyset$

An edge e of a graph G is said to be *stuck between leaves* if both of its endpoints are adjacent to leaves. We say e is an SBL of G.

An edge e of a graph G is said to be *stuck between leaves* if both of its endpoints are adjacent to leaves. We say e is an SBL of G.

Theorem

If G has an SBL, then EC_G is a cone over the SBL. In particular, Ind(G) is contractible.

Example of SBL

(a) A graph G with an SBL bc

(b) EC_G is a cone over bc

A hidden SBL of a forest F is an SBL of an induced subgraph F_i in a leaf-filtration of F.

Theorem

Let F be a forest without isolated vertices. The independence complex of F is contractible if and only if F has a hidden SBL.

An example of hidden SBL

The edge bd is a hidden SBL of the graph G below

The graph G - N[f] has an SBL bd which is not an SBL of G

Let G be a ternary graph with n cycles. Let $S \subset V(G)$ be such that $G(\emptyset|S)$ is a forest. Then whenever $A \subset S$ is an independent set $G(A|S \setminus A)$ is also a forest.

Let G be a ternary graph with n cycles. Let $S \subset V(G)$ be such that $G(\emptyset|S)$ is a forest. Then whenever $A \subset S$ is an independent set $G(A|S \setminus A)$ is also a forest.

Definition (The sign of a ternary graph)

Let $j_S(G)$ be the number of forests $G(A|S\setminus A)$ that dont have hidden SBLs or isolated vertices where $A \subset S$ is an independent set. The sign of G is $i_S(G) = (-1)^{j_S(G)}$.

Let G be a ternary graph with n cycles. Let $S \subset V(G)$ be such that $G(\emptyset|S)$ is a forest. Then whenever $A \subset S$ is an independent set $G(A|S \setminus A)$ is also a forest.

Definition (The sign of a ternary graph)

Let $j_S(G)$ be the number of forests $G(A|S\setminus A)$ that dont have hidden SBLs or isolated vertices where $A \subset S$ is an independent set. The sign of G is $i_S(G) = (-1)^{j_S(G)}$.

Lemma

Given any two suitable sets S, S' we have $i_S(G) = i_{S'}(G)$.

Because of the lemma above we write i(G) for the sign of G

When is the independence complex of a ternary graph contractible

Theorem

The independence complex of a ternary graph G is contractible if and only if i(G)=1

Example sign

Let G be the following graph and $S = \{e, b\}$

The graph G - S is a forest

Example sign

Let G be the following graph and $S = \{e, b\}$

The only graph without SBLs above is G - N[S], so the sign of G is -1.

Definition (Filtration)

A filtration \mathcal{F} of a ternary graph G with negative index is a sequence of induced subgraphs:

$$\mathcal{F}: \mathcal{G} \supset \mathcal{G}_1 \supset \cdots \supset \mathcal{G}_{q-1} \supset \mathcal{G}_q = \emptyset$$

such that the homology groups of $Ind(G_i)$ are isomorphic to the homology groups of $Ind(G_{i+1})$ (possibly with a shift) and G_{i+1} is either $G_i - v_i$ or $G_i - N[v_i]$ for some $v_i \in V(G_i)$

Let G be a ternary graph with non contractible independence complex and ${\cal F}$ a filtration of G.

Notation

- The vertex deletion number of \mathcal{F} is del $(\mathcal{F}) = |\{i \mid G_i = G_{i-1} v_i\}|$
- 2 The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \mid G_i = G_{i-1} N[v_i]\}$
- The *depth* of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Let G be a ternary graph with non contractible independence complex and \mathcal{F} a filtration of G.

Notation

- The vertex deletion number of \mathcal{F} is del $(\mathcal{F}) = |\{i \mid G_i = G_{i-1} v_i\}|$
- **2** The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \mid G_i = G_{i-1} N[v_i]\}$
- The *depth* of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Theorem

The independence complex of G is homotopy equivalent to $S^{\text{depth}(\mathcal{F})-1}$.

Let G be a ternary graph with negative index and \mathcal{F} an arbitrary filtration.

• The projective dimension of G is $pd(G) = del(\mathcal{F}) + \sum deg v$

3 The depth of G is depth $(G) = depth(\mathcal{F}) = |V| - pd(G)$

Theorem

- pd(G) = pd(R/I(G))
- depth(G) = depth(R/I(G))

 $v \in N(\mathcal{F})$