

From points to complexes: a concept of unexpectedness for simplicial complexes

Thiago Holleben

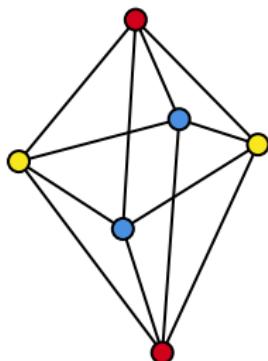
November 16, 2025

students/postdocs who speak portuguese: check out irere.org

Simplicial complexes and Stanley-Reisner ideals

A **simplicial complex** Δ is a collection of subsets of $[n]$ closed under inclusion. The **Stanley-Reisner ideal** of Δ is

$$I_\Delta = \left(\prod_{i \in \sigma} x_i : \sigma \notin \Delta \right) \subset R = \mathbb{K}[x_1, \dots, x_n]$$



$$I_\Delta = (x_1 x_2, x_3 x_4, x_5 x_6)$$

The early days of combinatorial commutative algebra

First applications of commutative algebra to combinatorics: [trying to classify the possible number of \$i\$ -faces of polytopes/spheres](#) (UBC, g -conjecture, etc)

The early days of combinatorial commutative algebra

First applications of commutative algebra to combinatorics: trying to classify the possible number of i -faces of polytopes/spheres (UBC, g -conjecture, etc)

Definition (WLP)

A standard graded artinian algebra A has the **weak Lefschetz property (WLP)** if there exists a linear form $\ell \in A_1$ such that $\times \ell : A_i \rightarrow A_{i+1}$ always has full rank

The idea: the WLP for $R/(I_\Delta, \theta_1, \dots, \theta_d)$ gives the inequalities people in combinatorics want

The choice of sop $\theta_1, \dots, \theta_d$ is extremely important!

The early days of combinatorial commutative algebra

First applications of commutative algebra to combinatorics: trying to classify the possible number of i -faces of polytopes/spheres (UBC, g -conjecture, etc)

Definition (WLP)

A standard graded artinian algebra A has the **weak Lefschetz property (WLP)** if there exists a linear form $\ell \in A_1$ such that $\times \ell : A_i \rightarrow A_{i+1}$ always has full rank

The idea: the WLP for $R/(I_\Delta, \theta_1, \dots, \theta_d)$ gives the inequalities people in combinatorics want

The choice of sop $\theta_1, \dots, \theta_d$ is extremely important!

How can we generate "special" sops for I_Δ ?

Taking a page from the geometry book: failure "for a reason"

Consider a set of points $X = \{X_1, \dots, X_s\} \subset \mathbb{P}^n$ and integers $\alpha_1, \dots, \alpha_s > 0$. Many classical problems in algebraic geometry ask about properties of the hypersurfaces that pass through X_i with multiplicity α_i for all i .

Taking a page from the geometry book: failure "for a reason"

Consider a set of points $X = \{X_1, \dots, X_s\} \subset \mathbb{P}^n$ and integers $\alpha_1, \dots, \alpha_s > 0$. Many classical problems in algebraic geometry ask about properties of the hypersurfaces that pass through X_i with multiplicity α_i for all i .

In 2018, Cook, Harbourne, Migliore and Nagel consider the problem of computing the dimension of the space of forms of degree d that vanish at a set of points X and vanish at a general point P with multiplicity m .

They argue that the **expected dimension** of this space should be $\max(0, \dim(I_X)_d - \binom{m+n-1}{n})$.

Taking a page from the geometry book: failure "for a reason"

Consider a set of points $X = \{X_1, \dots, X_s\} \subset \mathbb{P}^n$ and integers $\alpha_1, \dots, \alpha_s > 0$. Many classical problems in algebraic geometry ask about properties of the hypersurfaces that pass through X_i with multiplicity α_i for all i .

In 2018, Cook, Harbourne, Migliore and Nagel consider the problem of computing the dimension of the space of forms of degree d that vanish at a set of points X and vanish at a general point P with multiplicity m .

They argue that the **expected dimension** of this space should be $\max(0, \dim(I_X)_d - \binom{m+n-1}{n})$. When the **actual dimension** $\dim(I_X \cap I_P^m)_d$ of this space is strictly larger, they say X admits an **unexpected hypersurface of degree d**

Unexpected hypersurfaces and Macaulay duality

Due to a result of Emsalem and Iarrobino we know there is a relationship between

unexpected hypersurfaces and multiplication maps in $R/(\ell_1^{a_1}, \dots, \ell_s^{a_s})$

Theorem (Cook-Harbourne-Migliore-Nagel, 2018)

Let $Z = \{X_1, \dots, X_s\} \subset \mathbb{P}^2$ and $\{L_1, \dots, L_s\}$ the dual lines. Then Z has an unexpected curve of degree $j + 1$ if and only if

$$\times \ell^2 : (R/(L_1^{j+1}, \dots, L_s^{j+1}))_{j-1} \rightarrow (R/(L_1^{j+1}, \dots, L_s^{j+1}))_{j+1}$$

does not have full rank for general ℓ

What is an inverse system and where does it show up

Consider $R = \mathbb{K}[x_1, \dots, x_n]$ and $S = \mathbb{K}[y_1, \dots, y_n]$. S is an R -mod via contraction:

$$x_1^{a_1} \dots x_n^{a_n} \circ y_1^{b_1} \dots y_n^{b_n} = \begin{cases} y_1^{b_1-a_1} \dots y_n^{b_n-a_n} & \text{if } b_i \geq a_i \text{ for all } i \\ 0 & \text{otherwise} \end{cases}$$

What is an inverse system and where does it show up

Consider $R = \mathbb{K}[x_1, \dots, x_n]$ and $S = \mathbb{K}[y_1, \dots, y_n]$. S is an R -mod via contraction:

$$x_1^{a_1} \dots x_n^{a_n} \circ y_1^{b_1} \dots y_n^{b_n} = \begin{cases} y_1^{b_1-a_1} \dots y_n^{b_n-a_n} & \text{if } b_i \geq a_i \text{ for all } i \\ 0 & \text{otherwise} \end{cases}$$

The **inverse system** of an ideal $I \subset R$ is

$$I^{-1} = \{F \in S : g \circ F = 0 \text{ for all } g \in I\} \subset S$$

What is an inverse system and where does it show up

Consider $R = \mathbb{K}[x_1, \dots, x_n]$ and $S = \mathbb{K}[y_1, \dots, y_n]$. S is an R -mod via contraction:

$$x_1^{a_1} \dots x_n^{a_n} \circ y_1^{b_1} \dots y_n^{b_n} = \begin{cases} y_1^{b_1-a_1} \dots y_n^{b_n-a_n} & \text{if } b_i \geq a_i \text{ for all } i \\ 0 & \text{otherwise} \end{cases}$$

The **inverse system** of an ideal $I \subset R$ is

$$I^{-1} = \{F \in S : g \circ F = 0 \text{ for all } g \in I\} \subset S$$

- If I^{-1} is cyclic, R/I is artinian and Gorenstein.
- $\dim I_{-j}^{-1} = \dim(R/I)_j$

When $I^{-1} = (F)$ we call F the Macaulay dual generator of I

Where does it show up

- ① The inverse systems of artinian reductions of (CM) squarefree monomial ideals can be interpreted as "stresses" in rigidity theory
- ② Emsalem and Iarrobino's result!
- ③ many more

A way to think of this framework

- 1: Find an algebra of a specific form failing WLP/SLP
- 2: Use inverse systems to translate the failure to an interesting geometric property

Failure of WLP/SLP implying interesting geometric behavior is very common: Togliatti systems, Perazzo algebras, etc

When life gives you an algebra failing the WLP...

Consider a squarefree monomial ideal $I \subset \mathbb{K}[x_1, \dots, x_n]$ and $J = I + (x_1^a, \dots, x_n^a)$. It is known that WLP/SLP for monomial ideals can be checked by taking $\ell = x_1 + \dots + x_n$.

Our framework is:

- ① Find $A = R/J$ failing the WLP for special J (and I)
- ② Apply inverse systems (**somehow!**) to translate failure to an interesting combinatorial property

... make a regular sequence!

Let I be a Gorenstein squarefree monomial ideal and $J = I + (x_1^a, \dots, x_n^a)$.
Assume $A = R/J$ fails the WLP due to surjectivity in degree $d-1 \rightarrow d$

The idea

If $\times\ell$ is not surjective, $\times\ell^T$ is not **injective**. A polynomial $F \in \ker \times\ell^T$ should be the Macaulay dual generator of $I + \theta$, where θ is a system of parameters of I

We call a system of parameters arising this way an **unexpected system of parameters** of I (or Δ)

A probabilistic approach to failure: expecting the unexpected

Theorem (-, 2025+)

Let I be a Gorenstein* squarefree monomial ideal of codimension $\leq n - 2$. Then the elementary symmetric polynomials form an unexpected system of parameters of I . In particular,

$$\frac{R}{I + (x_1^{d+2}, \dots, x_n^{d+2})}$$

fails the WLP, where $d + 1 = \dim R/I$

A probabilistic approach to failure: expecting the unexpected

Theorem (-, 2025+)

Let I be a Gorenstein* squarefree monomial ideal of codimension $\leq n - 2$. Then the elementary symmetric polynomials form an unexpected system of parameters of I . In particular,

$$\frac{R}{I + (x_1^{d+2}, \dots, x_n^{d+2})}$$

fails the WLP, where $d + 1 = \dim R/I$

Corollary (Miró-Roig, Migliore, Nagel - 2010)

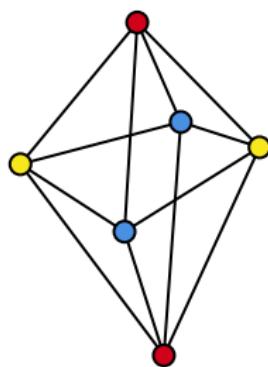
For every n , the algebra

$$\frac{R}{(x_1 \dots x_n, x_1^n, \dots, x_n^n)}$$

fails the WLP. (Take $I = (x_1 \dots x_n)$)

A combinatorial meaning to linear unexpectedness

A famous class of simplicial complexes in combinatorics is the class of **balanced complexes**: these are complexes that can be colored in such a way that every maximal face has exactly one vertex of each color.



A combinatorial meaning to linear unexpectedness

A famous class of simplicial complexes in combinatorics is the class of **balanced complexes**: these are complexes that can be colored in such a way that every maximal face has exactly one vertex of each color.

Theorem (-, 2025+)

If a simplicial complex is homeomorphic to a sphere (stronger than Gorenstein!), it admits an unexpected Isop if and only if it is balanced*

Proof: uses a combinatorial result that relies on the fundamental group

What is the intuition for unexpected sops?

One way to think of a sop θ of $I \subset R$ being unexpected, is if the following two conditions are satisfied:

- ① The socle degree of $R/(I, \theta)$ is d
- ② $x_i^a \in I + \theta$ for some $a \ll d$ and every i

From this perspective, we get to the following question that is interesting on its own

Question

Given a squarefree monomial ideal $I \subset R$ and a pair of integers (d, a) , when is there a sop θ of I such that

- ① socle degree of $R/(I, \theta)$ is d
- ② $x_i^a \in I + \theta$ for every i

What is the intuition for unexpected sops?

One way to think of a sop θ of $I \subset R$ being unexpected, is if the following two conditions are satisfied:

- ① The socle degree of $R/(I, \theta)$ is d
- ② $x_i^a \in I + \theta$ for some $a \ll d$ and every i

From this perspective, we get to the following question that is interesting on its own

Question

Given a squarefree monomial ideal $I \subset R$ and a pair of integers (d, a) , when is there a sop θ of I such that

- ① socle degree of $R/(I, \theta)$ is d
- ② $x_i^a \in I + \theta$ for every i
- ③ Bonus: $x_1 + \cdots + x_n \in I + \theta$

General sops are really bad to guarantee condition 2 for pairs $a \ll d$

The WLP comes into play when we add condition 3

Rees algebras: Rank of a matrix and analytic spread

In the theory of Rees algebras: computing analytic spread = computing ranks of matrices. Our results can be stated in terms of analytic spread:

a certain ideal has maximal analytic spread \implies no unexpected sop

unexpected sop \implies a certain ideal doesn't have maximal analytic spread

Two seemingly distinct questions

Let F be a polynomial of degree d in n variables and $\nabla \cdot F = F_{x_1} + \cdots + F_{x_n}$

Question 1

For which pairs d, n is there a solution F of $\nabla \cdot F = 0$ such that no monomial in F is divisible by x_i^a ?

Question 2

Let $A = R/I$ be an artinian Gorenstein algebra such that $x_i^a \in I$ for every i and $x_1 + \cdots + x_n \in I$. What is the highest possible socle degree of A ?

What if we add "simplicial restrictions" to the questions above?

