Lefschetz properties of squarefree monomial ideals via Rees algebras

Thiago Holleben

Dalhousie University

June 28

Stanley-Reisner, Facet (and incidence) ideals

A simplicial complex Δ on vertex set [n] is a collection of subsets Δ of [n] such that $\tau \subset \sigma \in \Delta \implies \tau \in \Delta$. We write $\Delta = \langle F_1, \ldots, F_s \rangle$ if F_1, \ldots, F_s are the facets (maximal subsets) of Δ .

 $\Delta = \langle \{1,2,3\}, \{2,3,4\}, \{2,4,5\}, \{5,4,6\}\rangle$

Stanley-Reisner, Facet (and incidence) ideals

Let $S = k[x_1, ..., x_n]$ and $\Delta = \langle F_1, ..., F_s \rangle$ a simplicial complex with vertex set [n].

• The Stanley-Reisner ideal of Δ is the ideal

$$\mathcal{N}(\Delta) = (\prod_{i \in B} x_i : B
ot \in \Delta) \subset S$$

• The **Facet** ideal of Δ is the ideal

$$\mathcal{F}(\Delta) = (\prod_{i \in F_1} x_i, \dots, \prod_{i \in F_s} x_i) \subset S$$

Both constructions give bijections between simplicial complexes and squarefree monomial ideals

Stanley-Reisner, Facet (and incidence) ideals

4/19

Lefschetz properties

Let I be a monomial ideal of $S = k[x_1, ..., x_n]$ such that A = S/I is artinian.

Definition

We say A satisfies the weak Lefschetz property (WLP) if the multiplication maps

$$\times L : A_i \to A_{i+1}$$

by some linear form $L \in S_1$ have full rank for every *i*. If moreover the maps

$$\times L^{j}: A_{i} \to A_{i+j}$$

have full rank for every i, j, we say A satisfies the strong Lefschetz property (SLP)

Since I is monomial, we can take $L = x_1 + \cdots + x_n \in S_1$

$$A(\Delta)=k[x_1,\ldots,x_6]/(\mathcal{N}(\Delta),x_1^2,x_2^2,x_3^2,x_4^2,x_5^2,x_6^2)$$
 has the SLP whenever char $k\neq 2$

An example with the SLP

Let
$$\mathcal{N}(\Delta) = (x_1x_4, x_1x_5, x_3x_5, x_1x_6, x_2x_6, x_3x_6) \subset S = k[x_1, \dots, x_6]$$
, Then

$$\mathcal{A}(\Delta) = rac{S}{(\mathcal{N}(\Delta), x_1^2, \dots, x_6^2)}$$

and

has full rank in every odd characteristic

Incidence matrices (everywhere!)

The two matrices that represent the maps we just saw have very particular structures:

Taking rows as exponents we have the ideal

 $(x_1x_2, x_1x_3, x_2x_3, x_2x_4, x_2x_5, x_3x_4, x_4x_5, x_4x_6, x_5x_6)$

We call the matrices that represent the multiplication by L maps in $A(\Delta)$ the **incidence matrices** of Δ .

Taking rows of an incidence matrix as exponents we have an **incidence** ideal of Δ . Incidence ideals are ideals in the **incidence** ring of Δ :

$$S_{\Delta} = \mathbb{C}[x_{\tau} : \tau \in \Delta]$$

- $\times L : A(\Delta)_1 \to A(\Delta)_2$ corresponds to the ideal $(x_1x_2, x_1x_3, x_2x_4, x_2x_4, x_2x_5, x_3x_4, x_4x_5, x_4x_6, x_5x_6)$
- $\times L : A(\Delta)_2 \to A(\Delta)_3$ corresponds to the ideal $(x_{\{1,2\}}x_{\{1,3\}}x_{\{2,3\}}, x_{\{2,3\}}x_{\{2,4\}}x_{\{3,4\}}, x_{\{2,4\}}x_{\{2,5\}}x_{\{4,5\}}, x_{\{4,5\}}x_{\{4,6\}}x_{\{5,6\}})$

The bipartite property in Combinatorial Commutative Algebra

Let $I(G) = (x_i x_j : ij \text{ is an edge of } G)$ be the edge ideal of G

Not bipartite \iff The rational map defined by I(G) is birational $\iff I(G)$ is of linear type $\iff I(G)^{(m)} \neq I(G)^m$ for some m \iff Incidence matrix has full rank (one multiplication map)

But what can we say for simplicial complexes in general?

Theorem (-, 2024)

If Δ is connected and pure of dimension 2, then:

 $\mathcal{F}(\Delta)$ is of linear type $\implies A(\Delta)$ has the SLP

Which properties of the Rees algebra

$$\mathcal{S}[\mathcal{F}(\Delta)t] = igoplus_{i \in \mathbb{N}} t^i \mathcal{F}(\Delta)^i$$

of $\mathcal{F}(\Delta)$ can be translated into information on the Lefschetz properties of $\mathcal{N}(\Delta)?$

From linear type to Lefschetz properties: sufficient conditions visualized

Linear type results can't be used

Linear type results imply WLP in every odd characteristic

SLP in every odd characteristc

Symbolic powers of squarefree monomial ideals

Let $\mathcal{F}(\Delta) \subset S = k[x_1, \dots, x_n]$ be a squarefree monomial ideal. The *m*-th symbolic power of $\mathcal{F}(\Delta)$ is:

$$\mathcal{F}(\Delta)^{(m)} = igcap_{P\in\mathsf{Ass}(\mathcal{F}(\Delta))} P^m$$

If $\mathcal{F}(\Delta) = (x_1x_2, x_2x_3, x_1x_3)$, then

 $\mathcal{F}(\Delta)^{(2)} = (x_1 x_2 x_3, x_1^2 x_2^2, x_2^2 x_3^2, x_1^2 x_3^2) \neq \mathcal{F}(\Delta)^2$

Symbolic powers and Lefschetz properties of squarefree monomial ideals are not compatible

Theorem (-, 2024)

Let Δ be a pure simplicial complex with at least as many facets as vertices.

If F(Δ)^(m) = F(Δ)^m for all m, then A(Δ) fails the SLP due to the largest map not being injective.

Symbolic powers and Lefschetz properties of squarefree monomial ideals are not compatible

Theorem (-, 2024)

Let Δ be a pure simplicial complex with at least as many facets as vertices.

If F(Δ)^(m) = F(Δ)^m for all m, then A(Δ) fails the SLP due to the largest map not being injective.

Corollary (-, 2024)

Let G be a bipartite graph with $n \ge 5$ vertices and w(G) the whiskered graph. Let

$$I(w(G)) = (x_{i_{1,1}}, \dots, x_{i_{1,n}}) \bigcap \dots \bigcap (x_{i_{r,1}}, \dots, x_{i_{r,n}})$$

and $\Delta = \langle \{i_{1,1}, \dots, i_{1,n}\}, \dots, \{i_{r,1}, \dots, i_{r,n}\} \rangle$. Then $A(\Delta)$ fails the SLP.

- Mixed multiplicities \iff failure (or not) of WLP/SLP in characteristic zero, bounds in positive characteristic
- Linear type + low dimension \implies WLP/SLP in characteristic zero
- Symbolic powers = ordinary powers \implies failure of SLP in characteristic zero

From Lefschetz to Rees: Simplicial (mixed) Eulerian numbers

The Eulerian number A(n, k) is the number of permutations of [n] with k ascents

Theorem (Laplace, 1886)

A(n, k) is equal to the volume of the convex hull of the set

$$\Big\{\sum_{i\in I}e_i\colon I\subset [n], \text{ and } |I|=k\Big\}$$

Theorem (Postnikov, 2009)

The mixed volumes of the polytopes above (for $1 \le k < n$) are all positive

From Lefschetz to Rees: Simplicial (mixed) Eulerian numbers

The following is a corollary of known results about Lefschetz properties of monomial ideals

Corollary (-, 2024)

Let Δ be a pure simplicial complex of dimension d. The mixed volumes of the polytopes given by the convex hull of

$$\Big\{\sum_{i\in I}e_i\colon I\in\Delta, \text{ and } |I|=k\Big\}$$

for $1 \le k < d$ are all positive

 Ranks of multiplication maps for algebras A(Δ) say whether a set of monomials is algebraic dependent or not → Perazzo forms (via Nagata idealization)

- Ranks of multiplication maps for algebras A(Δ) say whether a set of monomials is algebraic dependent or not → Perazzo forms (via Nagata idealization)
- Analytic spread can always be computed by ranks of matrices that show up as multiplication maps