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A natural question

Let f be an invariant∗ of ideals. Given a specific family A of ideals (e.g. all
squarefree monomial ideals on q generators), how can we find a sharp
bound cf such that

f (I ) ≤ cf for all I ∈ A?

We will show that for every q there exists a single squarefree monomial
ideal ideal Eq such that for several invariants f we have

f (I ) ≤ f (Eq) for all squarefree monomial ideal I on q generators

for example, for every r (and i): βi (I r ) ≤ βi (E rq), βi (I (r)) ≤ βi (E
(r)
q ),

βi (I r ) ≤ βi (E rq)
astab(I ) ≤ astab(Eq)
ρ(I ) ≤ ρ(Eq), ρa(I ) ≤ ρa(Eq), sdefect(r , I ) ≤ sdefect(r , Eq)
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(Why) should we expect such an ideal to exist?

We can model squarefree monomial ideals combinatorially, so that the only
relevant information for the ideal, is how different variables interact in the
generators (how "(hyper)edges" intersect). If we are able to define an ideal
that contains all the possible interactions, maybe it would have such
property.

Concretely, we want for every subset of generators, a variable that only
divides that set of generators

The (sharp) upper bounds will follow since we will be able to map this ideal
into any other squarefree monomial ideal on the same number of generators
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Extremal ideals: the definition [EFŞS, 24]

1 S[q] = K[yA : A ⊆ [q] and A 6= ∅] (one variable per subset of
[q] = {1, . . . , q})

2 εi =
∏

i∈A yA (every subset containing i)

3 The q-Extremal ideal: Eq = (ε1, . . . , εq) ⊂ S[q]

The variable yA divides εi if and only if i ∈ A, so we have the property we
wanted

E4 = (y1y12y13y14y123y124y134y1234,

y2y12y23y24y123y124y234y1234,

y3y13y23y34y123y134y234y1234,

y4y14y24y34y124y134y234y1234)
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Extremal ideals: the hidden hero [EFŞS, 24]

It turns out that for every squarefree monomial ideal I = (m1, . . . ,mq) ⊂ R
there exists a map

ψI : S[q] → R

such that ψI (εi ) = mi , hence

ψI (Eq) = I and ψI (E rq) = I r

I = (x1x5x2x7, x3x2x7, x3x4x6) ⊂ R = K[x1, . . . , x7]

ψI (y12) = x2x7, ψI (y23) = x3, ψI (y1) = x1x5, ψI (y3) = x4x6, ψI (yA) = 1
otherwise
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Extremal ideals: the original motivation [EFŞS, 24]

The original "bound" obtained from extremal ideals says

Theorem (EFŞS, 24)
Let I be a squarefree monomial ideal minimally generated by q elements.
Then

βi (I
r ) ≤ βi (E rq) for all i , r

leads to several interesting combinatorial questions in topology and discrete
geometry

but what is special about betti numbers?
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Different notions of powers: ψ saves the day once again

The r -th symbolic power of a squarefree monomial ideal is

I (r) =
⋂

P∈Ass(I )

P r

The integral closure of a monomial ideal is

J = (monomial m : mi ∈ J i for some i)

Theorem (CDFHMŞ, 26+)
Let I be a squarefree monomial ideal generated by q elements. Then

1 ψI (E
(r)
q ) = I (r)

2 ψI (E rq) = I r
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Invariants of symbolic powers and integral closure

Invariants from the containment problem
1 ρ(I ) = sup{ sr : I

(s) 6⊂ I r} [BH, 2010]
2 ρa(I ) = sup{ sr : I

(s) 6⊂ I r} [GHVT, 2013], [DFMS, 2019]

Measuring differences between powers
1 sdefect(r , I ) = µ(I (r)/I r ) [GGSVT, 2018]
2 idefect(r , I ) = µ(I r/I r )

Eq gives sharp upper bound for all of these invariants

Theorem (CDFHMŞ, 26+)
Let I be a squarefree monomial ideal minimally generated by q elements.
Then

sdefect(2, I ) ≤ 2q − q − 1−
(
q

2

)
.

Moreover, this bound is sharp.
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The wonders of extremal ideals: turning statements into
examples

Proposition (CDFHMŞ, 26+)

If I = (m1,m2,m3) is a squarefree monomial ideal then I r = I r for all r .
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The dangers of extremal ideals: tackling all obstructions at
the same time

The q-extremal ideal is defined in a polynomial ring in 2q − 1 variables,
generated in high degree.

For q = 5 most computations are already infeasible

Most of the techniques we use imply there should be an equivalent discrete
geometric statement to computing the invariants mentioned so far. This
problem might be more tractable, but still very hard
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A lot more

There are many more applications of extremal ideals. Other properties that
can be studied via extremal ideals are:

associated primes, persistence property, stabilization of associated primes


