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Lefschetz Properties as matrices

Let k be an infinite field and I a monomial ideal in R = k[x1, . . . , xn] such
that A = R/I is artinian.

Proposition
A has the WLP in degree i ⇐⇒ the multiplication map ×L : Ai → Ai+1
has full rank, where L = x1 + · · ·+ xn.

For example if I = (x3, y3, z3, xy , yz) is a monomial ideal of R = k[x , y , z ],
then A = R/I has the WLP in degree 1 if the following map has full rank:

A1


x y z

x2 1 0 0
y2 0 1 0
z2 0 0 1
xz 1 0 1


−−−−−−−−−−−−−→ A2
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First perspective: Hyperplanes

Let A = k[x1, . . . , xn]/((xa1
1 , . . . , x

an
n ) + I ′) and

×(x1 + · · ·+ xn) : Ai
M−→ Ai+1

we can take the entries in the columns of M to be coefficients of linear
forms.

For example:


a + d b c + d

a 1 0 0
b 0 1 0
c 0 0 1
d 1 0 1

→ h = (a + d)(b)(c + d) ∈ C[a, b, c , d ]

Theorem
A has the WLP in degree i and
char k = 0 ⇐⇒ `(Jh) = min(dimAi , dimAi+1)
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Second perspective: Incidence matrices

We can also take the entries in the rows of M to be exponents of
monomials.

For example:


x y z

2 0 0
0 2 0
0 0 2
1 0 1

→ J = (x2, y2, z2, xz) ∈ C[x , y , z ]

Theorem
Let E be the set of nonzero monomials of degree 2 in A. E is the set of
edges of a graph G (that may have loops).
Then A has the WLP in degree 1 and characteristic 0 if and only if it has
the WLP in degree 1 in every odd characteristic.

Moreover, if dimA1 ≤ dimA2, then A has the WLP in characteristic zero if
and only if every connected component of G contains either a loop or an
odd cycle.
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A polynomial ring for both perspectives

Let I ⊂ R = k[x1, . . . , xn] be a monomial ideal such that A = R/I is
artinian. We set

RI = C[tm|m a monomial of R , m 6∈ I ]

Both objects mentioned before sit inside RI when we take M to be the
multiplication maps ×L : Ai → Ai+1.

In particular, we can describe the WLP of A in terms of the analytic spread
of ideals of RI .

Example
If I = (x2

1 , . . . , x
2
n ), then

RI = C[tm|m squarefree monomial in n variables]
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Mixed Multiplicities of ideals

Set m = (x0, . . . , xn) ⊂ k[x0, . . . , xn] = S , and J an arbitrary ideal of S .

The multigraded Hilbert function of the algebra

R(m|J) =
⊕

muJv/mu+1Jv

is a polynomial of the form (for u, v � 0)

n∑
i=0

e(n−i ,i)(m|J)un−iv i + terms of lower degree

The nonnegative numbers e(n−i ,i)(m|J) are called the mixed multiplicities
of m and J.
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WLP and Mixed Multiplicities: Columns as sums

Theorem (Trung, 2001)

e(n−i ,i)(m|J) > 0 ⇐⇒ 0 ≤ i ≤ `(J)− 1

where `(J) is the analytic spread of J

Theorem (Huh, 2012)
Let h be a product of linear forms in C[x0, . . . , xn] and let Jh be the
jacobian ideal of h. Then the coefficients of the characteristic polynomial
of the hyperplane arrangement defined by h are the mixed multiplicities of
Jh (after a convolution)
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WLP and Mixed Multiplicities: Columns as sums

Combining both results we conclude (over a field of characteristic zero):

Corollary
The analytic spread of the jacobian ideal of a product of linear forms h is
equal to the rank of the matrix where the entries in each column are the
coefficients of each linear form that divides h

M =


1 0 0
0 1 0
0 0 1
1 0 1

↔ h = (a + d)(b)(c + d) ∈ C[a, b, c , d ]

means rank M = 3 = `(Jh), where
Jh =

(
b c + b d , a c + a d + c d + d2, a b + b d , a b + b c + 2 b d

)
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Divisibility matrix and linear forms

Let A = R/I be artinian, where R = k[x1, . . . , xn] (k has characteristic 0)
and I is a monomial ideal.

For every nonzero monomial m of degree i of A, define:

lm =
∑

deg m′=i+1,m|m′

tm′ ∈ RI

and

hi =
∏

deg m=i

lm ∈ RI

Theorem
A has the WLP in degree i if and only if `(Jhi ) = min(dimAi , dimAi+1)
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WLP and Mixed Multiplicities: Rows as products

Let M be a r × s matrix with integer entries and constant row sum. The
following is a well known result from Erhart theory:

Theorem
Let α1, . . . , αr be the rows of M. Then the analytic spread of
(xα1 , . . . , xαr ) ⊂ k[x1, . . . , xs ] is the rank of M.



1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

↔ (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4) ⊂ k[x1, x2, x3, x4]
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Constant row sum

To use the result, the matrix must have constant row sum.

If there is a non squarefree monomial in A = R/I , the row sum is not going
to be constant:

A1


x y z

x2 1 0 0
y2 0 1 0
z2 0 0 1
xz 1 0 1


−−−−−−−−−−−−−→ A2



11/27

Constant row sum

To use the result, the matrix must have constant row sum.
If there is a non squarefree monomial in A = R/I , the row sum is not going
to be constant:

A1


x y z

x2 1 0 0
y2 0 1 0
z2 0 0 1
xz 1 0 1


−−−−−−−−−−−−−→ A2



11/27

Constant row sum

To use the result, the matrix must have constant row sum.
If there is a non squarefree monomial in A = R/I , the row sum is not going
to be constant:

A1


x y z

x2 1 0 0
y2 0 1 0
z2 0 0 1
xz 1 0 1


−−−−−−−−−−−−−→ A2



12/27

A = k[x1, . . . , xn]/((x
2
1 , . . . , x

2
n ) + I∆)

Proposition
The multiplication maps ×L : Ai → Ai+1 have constant row sum for every
i , the row sum is always equal to i + 1.

Proposition
The h-vector of A is the f -vector of ∆
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A = k[x1, . . . , xn]/((x
2
1 , . . . , x

2
n ) + I∆)

The WLP of these algebras has been studied before:
1 (WLP in char 2) In terms of simplicial cohomology (Migliore, Nagel

and Schenck)
2 (WLP in degree 1 and char 0) In terms of signless incidence matrices

of graphs (Dao, Nair)
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A small detour: incidence matrices everywhere

It was noticed by Migliore, Nagel and Schenck that the multiplication
maps by the sum of the variables of the algebra A(∆) coincide with
the simplicial coboundary maps in char 2 (i.e, the only difference are
some signs)

Dao and Nair studied the WLP in degree 1 when the field has
characteristic 0. One of the steps in their characterization is noticing
that the first multiplication map is the signless incidence matrix of the
1-skeleton of ∆, and the following well known result from graph
theory:

Theorem
The rank of the signless incidence matrix of a graph G of n vertices is
n − bG , where bG is the number of bipartite connected components of G .
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Incidence matrices everywhere: j-multiplicity of clutters

In 2017, Alilooee, Soprunov and Validashti studied the j-multiplicity of
squarefree monomial ideals generated in one single degree (clutters). One
particular case of their result is the following:

Theorem (Alilooee, Soprunov, Validashti (2017))
The j-multiplicity of the edge ideal of a graph G is positive if and only if
every connected component of G contains an odd cycle.

The proof of this (very) particular case uses the theorem mentioned from
graph theory

Possible consequences for SLP
In the more general cases, they need combinatorial descriptions of ranks of
matrices of the form ×Ld : A1 → Ad+1
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Incidence matrices everywhere: Birational combinatorics

In 2006, Simis and Villarreal used the term Birational Combinatorics to
describe the study of rational monomial maps Pn 99K Pm. Most of their
work was focused on the case n = m.

Given a set of monomials F = {xα1 , . . . , xαs} we call the matrix M with
rows α1, . . . , αs the log-matrix of F .

Theorem ((DPB), Simis and Villarreal (2003))
Let Xd be the set of all monomials of degree d in k[x1, . . . , xn], and let
F ⊂ Xd .

Then the extension k[F ] ⊂ k[Xd ] is birational if and only if the gcd of all
maximal minors of the log-matrix of F is d

WLP in positive characteristics
The prime divisors of the gcd of all the maximal minors are exactly the
characteristics where WLP fails.
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Incidence matrices everywhere: Birational combinatorics

Other statements include:

Theorem ((DPB), Simis and Villarreal)
A rational map ϕ : Pn 99K Pn defined by monomials of degree d is
birational if and only if the determinant of the log-matrix of the monomials
defining the map is ±d .

Theorem (Simis and Villarreal (2003))
If the log-matrix of a set of monomials F has full rank and the ideal (F )
has a linear presentation, then the extension k[F ] ⊂ k[Xd ] is birational.

Positive characteristics
In particular, WLP in characteristic 0 + a specific ideal having linear
presentation implies WLP in positive characteristics
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Incidence matrices everywhere: Birational combinatorics

Note that given a r × s matrix M with integer entries and constant row
sum d and r ≥ s, we can add every column to the last one, so the maximal
minors are always divisible by d .

det

0 1 1
1 0 1
1 1 0

 = det

0 1 2
1 0 2
1 1 2

 = 2 det

0 1 1
1 0 1
1 1 1
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Incidence matrices everywhere: Birational combinatorics

Given a rational monomial map ϕ : Pn 99K Pm defined by monomials of
degree 2, we can associate a graph, by taking the coordinates to be edges
(possibly loops), the vertices being the variables.

[x2
1 : x2

3 : x1x2 : x1x4 : x2x3 : x2x4 : x3x4]

x1 x2 x3 x4



x2
1 2 0 0 0
x2
3 0 0 2 0

x1x2 1 1 0 0
x1x4 1 0 0 1
x2x3 0 1 1 0
x2x4 0 1 0 1
x3x4 0 0 1 1

x1 x2

x3x4
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x1 x2

x3x4
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Incidence matrices everywhere: Birational combinatorics

Theorem (Simis and Villarreal (2006))
Let G be a connected graph (possibly with loops) and ϕG : Pn 99K Pn its
rational map. The following are equivalent:

detM 6= 0, where M is the log-matrix of the set of monomials defining
ϕG

ϕG is birational
Either:

G has no loops and a unique odd cycle
G has only one cycle, which is a loop

The edge ideal of G is of linear type

Question
What is the connection between ideals of linear type and the WLP in
positive characteristics?
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Consequences for the WLP of monomial ideals (in degree 1)

The only difference between the log-matrix of a set of monomials of degree
2 and the incidence matrix of a graph is that for incidence matrices, loops
are rows with only one nonzero entry, which is 1, while for log-matrices
that entry is 2. We can then show the following:

Theorem
Let I be a monomial ideal in R = k[x1, . . . , xn] such that A = R/I is
artinian. Let I ′ be the ideal generated by the monomials of degree 2 of R
not in I . The ideal I ′ is the edge ideal of a graph G (that may have loops).

Then A has the WLP in degree 1 and characteristic 0 if and only if it has
the WLP in degree 1 in every odd characteristic.

Moreover, if dimA1 ≤ dimA2, then A has the WLP in characteristic zero if
and only if every connected component of G contains either a loop or an
odd cycle.
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An example

Let R = k[x1, x2, x3, x4] and I = (x3
1 , x

2
2 , x

3
3 , x

2
4 , x1x3).

x1 x2

x3x4

Then A = R/I has the WLP in degree 1 in every characteristic that is not
2 by the theorem.
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Mixed multiplicities and the WLP in higher degrees

To generalize these ideas to higher degrees we use the results from Trung
and Verma (2007) connecting mixed volumes and mixed multiplicities.

We want to connect the positivity of the last mixed multiplicity of an ideal
to the WLP in characteristic 0, and the value of this mixed multiplicity to
be a bound on the characteristics where the WLP can fail.
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Incidence ideals: example

Consider the following simplicial complex:

a

d

b
c

Then A = k[a, b, c , d ]/(a2, b2, c2, d2, abd). The multiplication matrix that
determines the WLP in degree 1 and the corresponding ideal are:

A1



a b c d

ab 1 1 0 0
ac 1 0 1 0
ad 1 0 0 1
bc 0 1 1 0
bd 0 1 0 1
cd 0 0 1 1


−−−−−−−−−−→ A2, I∆(1) = (tatb︸︷︷︸

ab

, tatc︸︷︷︸
ac

, tatd︸︷︷︸
ad

, tbtc︸︷︷︸
bc

, tbtd︸︷︷︸
bd

, tctd︸︷︷︸
cd

)
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Incidence ideals: example

Consider the following simplicial complex:

a

d

b
c

Then A = k[a, b, c , d ]/(a2, b2, c2, d2, abd). The multiplication matrix that
determines the WLP in degree 2 and the corresponding ideal are:

A2


ab ac ad bc bd cd

abc 1 1 0 1 0 0
acd 0 1 1 0 0 1
bcd 0 0 0 1 1 1


−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A3

I∆(2) = (tabtactbc︸ ︷︷ ︸
abc

, tactad tcd︸ ︷︷ ︸
acd

, tbctbd tcd︸ ︷︷ ︸
bcd

)
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A simple example of linear type

Many results on the linear type of squarefree monomial ideals are known,
so we can try to use them in order to find examples of monomial ideals
that have WLP in every characteristic.

Next we use results by Faridi and Alilooee to give a simple example of an
ideal that has the WLP in degree 2 in every characteristic.

Consider the simplicial complex

1

2

3

4

5

6 7

By the results of Faridi and Alilooee the facet ideal of the complex above is
of linear type.
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A simple example of linear type

1

2

3

4

5

6 7

Taking each vertex to be an edge of a new simplicial complex ∆, we see
that the log-matrix of the set of generators of the facet ideal of the
complex above: (x1x2x3, x3x4x5, x3x6x7) is the multiplication map

×L : A2 → A3

where A = k[a, b, c , d , e]/((a2, b2, c2, d2, e2) + (ad , ae, de)).

In particular, we can check that A has the WLP in degree 2 in every
characteristic.
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