Lefschetz properties and Rees algebras of squarefree monomial ideals

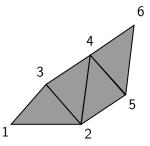
Thiago Holleben

Dalhousie University

December 2

Stanley-Reisner, Facet (and incidence) ideals

A simplicial complex Δ on vertex set [n] is a collection of subsets Δ of [n] such that $\tau \subset \sigma \in \Delta \implies \tau \in \Delta$. We write $\Delta = \langle F_1, \ldots, F_s \rangle$ if F_1, \ldots, F_s are the facets (maximal subsets) of Δ .



The simplicial complex $\Delta = \langle \{1, 2, 3\}, \{2, 3, 4\}, \{2, 4, 5\}, \{5, 4, 6\} \rangle$

If we remove every 2-face of Δ (i.e the triangles), we get the complex $\Delta(1)$ which consists of the same vertices and edges of Δ , but no triangles

Stanley-Reisner, Facet (and incidence) ideals

Let $S = k[x_1, ..., x_n]$ and $\Delta = \langle F_1, ..., F_s \rangle$ a simplicial complex with vertex set [n].

• The Stanley-Reisner ideal of Δ is the ideal

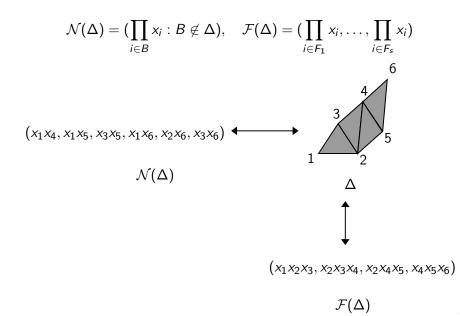
$$\mathcal{N}(\Delta) = (\prod_{i \in B} x_i : B
ot \in \Delta) \subset S$$

• The **Facet** ideal of Δ is the ideal

$$\mathcal{F}(\Delta) = (\prod_{i \in F_1} x_i, \dots, \prod_{i \in F_s} x_i) \subset S$$

Both constructions give bijections between simplicial complexes and squarefree monomial ideals

Stanley-Reisner, Facet (and incidence) ideals



4/19

Let I be a monomial ideal of $S = k[x_1, ..., x_n]$ such that A = S/I is artinian, and $L = x_1 + \cdots + x_n \in S_1$.

Definition

We say A satisfies the **weak Lefschetz property (WLP)** if the multiplication maps

$$\times L: A_i \to A_{i+1}$$

have full rank for every *i*. If moreover the maps

$$\times L^j : A_i \to A_{i+j}$$

have full rank for every i, j, we say A satisfies the strong Lefschetz property (SLP)

Proposition

If A is an algebra that satisfies the WLP, then

$$\dim A_1 \leq \dim A_2 \leq \cdots \leq \dim A_k \geq \cdots \geq \dim A_d$$

for some k, in other words, the h-vector of A is **unimodal**.

We are particularly interested in algebras of the form:

$$A(\Delta) = \frac{S}{(\mathcal{N}(\Delta), x_1^2, \dots, x_n^2)}$$

where Δ is a simplicial complex.

Proposition

If A is an algebra that satisfies the WLP, then

$$\dim A_1 \leq \dim A_2 \leq \cdots \leq \dim A_k \geq \cdots \geq \dim A_d$$

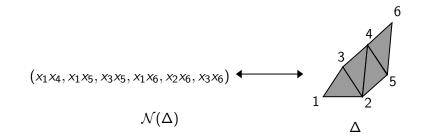
for some k, in other words, the h-vector of A is **unimodal**.

We are particularly interested in algebras of the form:

$$A(\Delta) = \frac{S}{(\mathcal{N}(\Delta), x_1^2, \dots, x_n^2)}$$

where Δ is a simplicial complex.

dim $A(\Delta)_i = f_{i-1}$ = the number of i-1 dimensional faces of Δ



The algebra

$$A(\Delta) = k[x_1, \dots, x_6] / (\mathcal{N}(\Delta), x_1^2, x_2^2, x_3^2, x_4^2, x_5^2, x_6^2)$$

has the SLP whenever k is not a field of characteristic 2.

The bipartite property in Combinatorial Commutative Algebra

Not bipartite \iff The rational map defined by I(G) is birational

 $\iff I(G) \text{ is of linear type}$ $\iff I(G)^{(m)} \neq I(G)^m \text{ for some } m$ $\iff \text{Incidence matrix has full rank}$

The bipartite property in Combinatorial Commutative Algebra

Not bipartite \iff The rational map defined by I(G) is birational $\iff I(G)$ is of linear type $\iff I(G)^{(m)} \neq I(G)^m$ for some m \iff Incidence matrix has full rank

But what can we say for simplicial complexes in general?

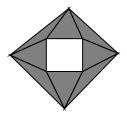
Theorem

If Δ is connected and pure of dimension 2, then:

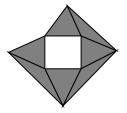
 $\mathcal{F}(\Delta)$ is of linear type $\implies A(\Delta)$ has the SLP

Which properties of the Rees algebra of $\mathcal{F}(\Delta)$ can be translated into information on the Lefschetz properties of $\mathcal{N}(\Delta)$?

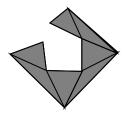
From linear type to Lefschetz properties: sufficient conditions visualized



Linear type results can't be used



Linear type results imply WLP in every odd characteristic



SLP in every odd characteristc

Symbolic powers of squarefree monomial ideals

Let $\mathcal{F}(\Delta) \subset S = k[x_1, \dots, x_n]$ be a squarefree monomial ideal. The *m*-th symbolic power of $\mathcal{F}(\Delta)$ is:

$$\mathcal{F}(\Delta)^{(m)} = igcap_{P\in\mathsf{Ass}(\mathcal{F}(\Delta))} P^m$$

If $\mathcal{F}(\Delta) = (x_1x_2, x_2x_3, x_1x_3)$, then

 $\mathcal{F}(\Delta)^{(2)} = (x_1 x_2 x_3, x_1^2 x_2^2, x_2^2 x_3^2, x_1^2 x_3^2) \neq \mathcal{F}(\Delta)^2$

Symbolic Powers and Lefschetz properties are not compatible

Theorem

Let Δ be a pure simplicial complex with at least as many facets as vertices.

• If $\mathcal{F}(\Delta)^{(m)} = \mathcal{F}(\Delta)^m$ for all m, then $A(\Delta)$ fails the SLP.

Corollary

Let G be a bipartite graph with $n \ge 5$ vertices and w(G) the whiskered graph. Let

$$I(w(G)) = (x_{i_{1,1}}, \dots, x_{i_{1,n}}) \bigcap \dots \bigcap (x_{i_{r,1}}, \dots, x_{i_{r,n}})$$

and $\Delta = \langle \{i_{1,1}, \dots, i_{1,n}\}, \dots, \{i_{r,1}, \dots, i_{r,n}\} \rangle$. Then $A(\Delta)$ fails the SLP.

The symbolic defect: a horizontal perspective

Symbolic Defect sequence of an ideal (GGSVT, 2018)

Let I be an ideal, define

sdefect(I, m) = the minimal number of generators of $I^{(m)}/I^m$

for every m.

Theorem (GGSVT, 2018)

If I is the ideal generated by every squarefree monomial ideal of degree d in n variables, then

$$\mathsf{sdefect}(I,2) = \binom{n}{d+1}$$

In other words, sdefect(1, 2) is the number of d-faces of the simplex on n vertices.

Symbolic defect polynomials

$\mathsf{sdefect}(\mathcal{F}(\Delta), m)$

$\mathsf{sdefect}(\mathcal{F}(\Delta),4)$

÷

$\mathsf{sdefect}(\mathcal{F}(\Delta),3)$

$\mathsf{sdefect}(\mathcal{F}(\Delta), 2)$

 $sdefect(\mathcal{F}(\Delta(1), m) \quad \cdots \quad sdefect(\mathcal{F}(\Delta(d-1), m) \quad sdefect(\mathcal{F}(\Delta), m))$

:

 $\begin{aligned} & \mathsf{sdefect}(\mathcal{F}(\Delta(1),4) & \cdots & \mathsf{sdefect}(\mathcal{F}(\Delta(d-1),4) & \mathsf{sdefect}(\mathcal{F}(\Delta),4) \\ & \mathsf{sdefect}(\mathcal{F}(\Delta(1),3) & \cdots & \mathsf{sdefect}(\mathcal{F}(\Delta(d-1),3) & \mathsf{sdefect}(\mathcal{F}(\Delta),3) \\ & \mathsf{sdefect}(\mathcal{F}(\Delta(1),2) & \cdots & \mathsf{sdefect}(\mathcal{F}(\Delta(d-1),2) & \mathsf{sdefect}(\mathcal{F}(\Delta),2) \end{aligned}$

÷

The second symbolic defect polynomial

The second symbolic defect polynomial of a pure simplicial complex Δ is:

$$\mu(\Delta, 2, x) = \sum_{i} \mathsf{sdefect}(\mathcal{F}(\Delta(i)), 2) x^{i+2}$$

The second symbolic defect polynomial

The second symbolic defect polynomial of a pure simplicial complex Δ is:

$$\mu(\Delta, 2, x) = \sum_i \mathsf{sdefect}(\mathcal{F}(\Delta(i)), 2) x^{i+2}$$

Theorem

Let Δ be a flag simplicial complex.

- The coefficient of x³ in μ(Δ, 2, x) is equal to the number of triangles of Δ.
- The sequence of coefficients of $\mu(\Delta, 2, x)$ has no internal zeros.

Let $\mathcal{N}(\Delta) = (x_i x_{i+1} : 1 \le i \le 14) \subset k[x_1, \dots, x_{15}]$. Then

 $\mu(\Delta, 2, x) = 286x^3 + 495x^4 + 462x^5 + 210x^6 + 36x^7 + x^8$

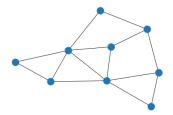
Let $\mathcal{N}(\Delta) = (x_i x_{i+1} : 1 \le i \le 14) \subset k[x_1, \dots, x_{15}]$. Then

 $\mu(\Delta, 2, x) = 286x^3 + 495x^4 + 462x^5 + 210x^6 + 36x^7 + x^8$

and the *f*-vector of Δ is:

(1, 15, 91, 286, 495, 462, 210, 36, 1)

A couple of examples



The Stanley-Reisner complex Δ of the edge ideal of the graph above has

- $\mu(\Delta, 2, x) = 17x^3 + 5x^4$
- *f*-vector: (1, 9, 22, 17, 4)

So the two are not always the same

Questions

- When is the second symbolic defect polynomial of a complex equal to its *f*-vector?
- When is the second symbolic defect polynomial of a complex unimodal?

Questions

- When is the second symbolic defect polynomial of a complex equal to its *f*-vector?
- When is the second symbolic defect polynomial of a complex unimodal?

Do the questions above hold when Δ is the independence complex of a forest?