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Stanley-Reisner, Facet (and incidence) ideals

A simplicial complex ∆ on vertex set [n] is a collection of subsets ∆ of [n]
such that τ ⊂ σ ∈ ∆ =⇒ τ ∈ ∆. We write ∆ = 〈F1, . . . ,Fs〉 if
F1, . . . ,Fs are the facets (maximal subsets) of ∆.
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∆ = 〈{1, 2, 3}, {2, 3, 4}, {2, 4, 5}, {5, 4, 6}〉
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Stanley-Reisner, Facet (and incidence) ideals

Let S = k[x1, . . . , xn] and ∆ = 〈F1, . . . ,Fs〉 a simplicial complex with
vertex set [n].

The Stanley-Reisner ideal of ∆ is the ideal

N (∆) = (
∏
i∈B

xi : B 6∈ ∆) ⊂ S

The Facet ideal of ∆ is the ideal

F(∆) = (
∏
i∈F1

xi , . . . ,
∏
i∈Fs

xi ) ⊂ S

Both constructions give bijections between simplicial complexes and
squarefree monomial ideals
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Stanley-Reisner, Facet (and incidence) ideals

N (∆) = (
∏
i∈B

xi : B 6∈ ∆), F(∆) = (
∏
i∈F1

xi , . . . ,
∏
i∈Fs
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N (∆)

F(∆)

(x1x4, x1x5, x3x5, x1x6, x2x6, x3x6)

(x1x2x3, x2x3x4, x2x4x5, x4x5x6)
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Lefschetz properties

Let I be a monomial ideal of S = k[x1, . . . , xn] such that A = S/I is
artinian, and L = x1 + · · ·+ xn ∈ S1.

Definition
We say A satisfies the weak Lefschetz property (WLP) if the
multiplication maps

×L : Ai → Ai+1

have full rank for every i .
If moreover the maps

×Lj : Ai → Ai+j

have full rank for every i , j , we say A satisfies the strong Lefschetz
property (SLP)
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A motivation from Combinatorics

Proposition
If A is an algebra that satisfies the WLP, then

dimA1 ≤ dimA2 ≤ · · · ≤ dimAk ≥ · · · ≥ dimAd

for some k , in other words, the h-vector of A is unimodal.

We are particularly interested in algebras of the form:

A(∆) =
S

(N (∆), x2
1 , . . . , x

2
n )

where ∆ is a simplicial complex.

dimA(∆)i = fi−1 = the number of i − 1 dimensional faces of ∆
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An example with the SLP
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∆
N (∆)

(x1x4, x1x5, x3x5, x1x6, x2x6, x3x6)

The algebra

A(∆) = k[x1, . . . , x6]/(N (∆), x2
1 , x

2
2 , x

2
3 , x

2
4 , x

2
5 , x

2
6 )

has the SLP whenever k is not a field of characteristic 2.
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Analytic spread of monomial ideals (via toric ideals)

Given a monomial ideal I = (m1, . . . ,ms) ⊂ S = k[x1, . . . , xn] where
degmi = d for all i , define

ϕ : k[e1, . . . , es ]→ S

ei 7→ mi .

The analytic spread of I is

`(I ) = dim
k[e1, . . . , es ]

kerϕ
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Analytic spread and rank

Using the theory of Rees algebras it is possible to define the analytic spread
of an arbitrary ideal. Even in the general case, analytic spread is known to
be related to ranks of special matrices

(Simis, 2003): Analytic spread as rank of jacobian matrices

(Villarreal): Analytic spread as rank of d-stochastic matrices

Analytic spread as ranks of matroids
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Analytic spread and positivity of algebraic invariants

A classical fact from Commutative algebra
Let I = (f1, . . . , fs) ⊂ k[x1, . . . , xn], then

`(I ) ≤ min{s, n}

When `(I ) = n, the ideal I is said to have maximal analytic spread

The motivation for maximal analytic spread
Many theorems in Commutative Algebra relate positivity of algebraic
invariants to ideals of maximal analytic spread
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Analytic spread and positivity of algebraic invariants

(Trung, 2006) All the mixed multiplicities of an ideal are positive if
and only if it has maximal analytic spread

(Nishida and Ulrich, 2010) j-multiplicity: j(I ) > 0 ⇐⇒ `(I ) = n

(Cutkosky, 2011) ε-multiplicity: ε(I ) > 0 ⇐⇒ `(I ) = n

(Morey and Villarreal, 2012) Symbolic defect: If I is a squarefree
monomial ideal, then `(I ) = n =⇒ sdefect(I ,m) > 0 for some m

(Castillo, Cid-Ruiz, Li, Montaño and Zhang, 2020) All the mixed
multiplicities of a sequence of ideals are positive if and only if the
ideals have maximal analytic spread
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The main idea

×Lj : Ai → Ai+j has full rank =⇒ a matrix has full rank
=⇒ an ideal has maximal analytic spread
=⇒ a number is positive

In particular, if an artinian algebra A has the WLP, a sequence of numbers
has no (internal) zeros
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Analytic spread of skeleta

Theorem (-, 2024)
Let ∆ be a pure simplicial complex on n vertices of dimension d , and ∆k

be its k-skeleton for 0 ≤ k < d . Then

`(F(∆k)) = n

Idea of proof: Hard Lefschetz theorem for product of projective spaces
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Eulerian numbers: a simplicial point of view

Let
∆n,k = conv

(∑
i∈I

ei : I ⊂ 2n |I | = k
)

Eulerian numbers
The numbers A(n, k) = vol(∆n,k) are called Eulerian numbers

A fact about Eulerian numbers
For every n, the sequence

A(n, 1), . . . ,A(n, n)

is real rooted and has no zeros
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Simplicial Eulerian numbers

From the simplex to simplicial complexes
Let ∆ be a d-dimensional pure simplicial complex. For every 0 ≤ k < d
define the polytope

P∆,k = conv(ei1 + · · ·+ eik+1 : {i1, . . . , ik+1} ∈ ∆)

Note that when ∆ is a simplex, P∆,k is a hypersimplex for every k

Theorem (-, 2024)
For every d-dimensional pure simplicial complex ∆ on n vertices ,

A∆(k) = vol(P∆,k) > 0 0 ≤ k < d

where vol is the normalized volume

(when) Is the sequence A∆(0), . . . ,A∆(d − 1)
unimodal/log-concave/real rooted?
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Symbolic powers

Symbolic powers of squarefree monomial ideals
Let F(∆) ⊂ S = k[x1, . . . , xn] be a squarefree monomial ideal where
∆ = 〈F1, . . . ,Fs〉. The m-th symbolic power of F(∆) is:

F(∆)(m) =
⋂
P∈P

Pm

where
P = {(xi : i 6∈ F1), . . . , (xi : i 6∈ Fs)}

If F(∆) = (x1x2, x2x3, x1x3), then

F(∆)(2) = (x1x2x3, x
2
1x

2
2 , x

2
2x

2
3 , x

2
1x

2
3 ) 6= F(∆)2

The intuition for symbolic powers of facet ideals
Symbolic powers can capture odd cycles in ∆ (as a hypergraph)
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The symbolic defect: a horizontal perspective

Symbolic Defect sequence of an ideal (GGSVT, 2018)
Let I be an ideal, define

sdefect(I ,m) = the minimal number of generators of I (m)/Im

for every m.

Theorem (GGSVT, 2018)
Let ∆ be the simplex on n vertices and ∆k the k-skeleton. Then

sdefect(F(∆d), 2) =

(
n

d + 1

)
In other words, sdefect(F(∆d), 2) is the number of d-faces of the simplex
on n vertices.
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Symbolic defect polynomials

sdefect(F(∆),m)

...

sdefect(F(∆), 4)

sdefect(F(∆), 3)

sdefect(F(∆), 2)
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Symbolic defect polynomials

sdefect(F(∆1),m) · · · sdefect(F(∆d−1),m) sdefect(F(∆),m)

...
. . .

...
...

sdefect(F(∆1), 4) · · · sdefect(F(∆d−1), 4) sdefect(F(∆), 4)

sdefect(F(∆1), 3) · · · sdefect(F(∆d−1), 3) sdefect(F(∆), 3)

sdefect(F(∆1), 2) · · · sdefect(F(∆d−1), 2) sdefect(F(∆), 2)
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Symbolic defect polynomials

The second symbolic defect polynomial
The second symbolic defect polynomial of a pure simplicial complex ∆
is:

µ(∆, 2, x) =
∑
i≥1

sdefect(F(∆i ), 2)x i+2

Theorem (-, 2024)
Let ∆ be a flag simplicial complex.

The coefficient of x3 in µ(∆, 2, x) is equal to the number of triangles
of ∆.
The sequence of coefficients of µ(∆, 2, x) is bounded below by the
f -vector of ∆.
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An example

Let N (∆) = (xixi+1 : 1 ≤ i ≤ 14) ⊂ k[x1, . . . , x15]. Then

µ(∆, 2, x) = 286x3 + 495x4 + 462x5 + 210x6 + 36x7 + x8

and the f -vector of ∆ is:

(1, 15, 91, 286, 495, 462, 210, 36, 1)

When ∆ is the independence complex of a forest, do we always have
equality? (true up to 16 vertices!)
When is the second symbolic defect polynomial unimodal?
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