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Rigidity theory of bar and joint structures

A framework is a pair (G , p) where G is a graph and p : V (G )→ Rn is
an embedding of G in Rn. A framework (G , p) is flexible if there exists a
nontrivial continuous motion of the vertices that preserves the edge lengths
of (G , p), and rigid otherwise.

It turns out that to study rigidity of frameworks with generic embeddings,
one only has to study the rank of a specific matrix M. Elements in the
kernel of M are called stresses.
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The setup

A simplicial complex ∆ is a collection of subsets of [n] such that

τ ⊂ σ ∈ ∆ =⇒ τ ∈ ∆

Definition
Given a simplicial complex ∆ on [n] vertices, its Stanley-Reisner ideal is
the ideal

I∆ = (xi1 . . . xis : {i1, . . . , is} 6∈ ∆)

Definition
Given a homogeneous ideal I ⊂ R = K[x1, . . . , xn] such that dim R

I = d , a
linear system of parameters (lsop) is a sequence of linear forms
θ1, . . . , θd such that

dim
R

I + (θ1, . . . , θd)
<∞
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Lee’s amazing idea (an example)

Given a simplicial complex ∆ of dimension d and an embedding p of ∆ in
Rd+1, we may view p as d + 1 linear forms. In our case, these will be a
lsop of I∆.

(2, 1)(1, 1)

(2, 2)(1, 2)

θ1 = x1 + 2x2 + 2x3 + x4
θ2 = 2x1 + 2x2 + x3 + x4
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Lee’s amazing idea (an example)

In 1996, Lee noticed that stresses could be computed by solving systems of
differential equations:

(2, 1)(1, 1)

(2, 2)(1, 2)

θ1 = x1 + 2x2 + 2x3 + x4
θ2 = 2x1 + 2x2 + x3 + x4


fx1 + 2fx2 + 2fx3 + fx4 = 0
2fx1 + 2fx2 + fx3 + fx4 = 0
fx1x3 = 0
fx2x4 = 0 x1x3 and x2x4 are the generators of I∆

Computing stresses = computing coefficients of f (deg f = 2)
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The summary

Let A(∆) = R
I∆+(θ1,...,θd+1)

Algebra Combinatorics
Data from geometric
complex

Linear system of
parameters

Vertex coordinates

Dimension of space of
stresses

Hilbert series of A(∆)
(h-vector of ∆)

Dimension of solution
space for
the system of PDEs

Stresses Elements of A(∆)
Solutions to system of
differential equations

A key problem when trying to work on the topics above is that
computations can be sensitive to θ1, . . . , θd+1
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The nonlinear case: symmetric polynomials

On the algebra side, most of the theory does not rely on θ1, . . . , θd+1 being
linear.

ek =
∑

i1<···<ik

xi1 . . . xik k-th elementary symmetric polynomial

Proposition (DEP, GS, S, HM, AR)
If ∆ is a simplicial complex of dimension d , the set of polynomials
e1, . . . , ed+1 is a system of parameters of I∆.

From now on, let Kco(∆) denote the following finite dimensional vector
space

Kco(∆) =
K[x1, . . . , xn]

I∆ + (e1, . . . , ed+1)
HS(Kco(∆), q) = h∆(q)[q]d !
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A starting point: a very familiar example

Let Sco(∆) be the space of solutions to the system
∑

1≤i1<···<ik≤n
fxi1 ...xik = 0 ∀k

fxi1 ...xis = 0 ∀{i1, . . . , is} 6∈ ∆

we call it the space of coinvariant stresses of ∆

Example
If ∆ is the boundary of a simplex, coinvariant stresses correspond to
solutions of ∑

1≤i1<···<ik≤n
fxi1 ...xik = 0 ∀k

It is known that there is a unique polynomial of degree
(n
2

)
satisfying the

condition above:∏
1≤i<j≤n

(xi − xj) The Vandermonde determinant
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From the boundary of a simplex to arbitrary complexes

Theorem (Top coinvariant stresses and top homology, (-, 2025))
Let ∆ be a d-dimensional simplicial complex and
c1F1 + · · ·+ csFs(6= 0) ∈ H̃d(∆;K). Then

c1xF1V (F1) + · · ·+ csxFsV (Fs) ∈ Sco(∆),

where xFj
=
∏

i∈Fj
xi and

V (Fj) =
∏
i<j

{i ,j}∈∆

(xi − xj)

Corollary (-, 2025)
If ∆ is a d-dimensional K-homology sphere, then the unique polynomial of
degree

(d+2
2

)
in Sco(∆) is the one above.
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Some (unexpected?) consequences of coinvariant stresses

Let ∆ be a d-dimensional simplicial complex and

A∆ =
K[x1, . . . , xn]

I∆ + (xd+2
1 , . . . , xd+2

n )

Theorem (WLP and coinvariant stresses (-, 2025))

If H̃d(∆;K) 6= 0 and fd−1 ≥ fd , then A∆ fails the weak Lefschetz property
(WLP)

Theorem (Failure should be expected (-, 2025))
Given a generalized Erdős–Rényi model for complexes of dimension d > 0,
there exists an open interval (cd , d + 1) 6= ∅ such that

lim
n→∞

P(A∆ fails the WLP) = 1

when the probability parameter p is in (cd , d + 1)
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Some questions

When ∆ is the boundary of a simplex the ring Kco(∆) has several nice
properties from combinatorial, algebraic and geometric perspectives.

Question (Coinvariant algebraic g -theorem)
Let ∆ be a Q-homology sphere. Does the ring Kco(∆) satisfy the strong
Lefschetz property?
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