Powers of a simplex: Resolutions meet Partititions

Thiago Holleben

Dalhousie University
Joint work with Trung Chau, Art Duval, Sara Faridi, Susan Morey and Liana Sega

January 27, 2024

The starting point: Resolutions

Given an ideal $I=\left(m_{1}, \ldots, m_{s}\right)$ in a polynomial ring R, there is a map

$$
\varphi: R^{s} \rightarrow R \quad \text { such that } \operatorname{lm} \varphi=I
$$

The starting point: Resolutions

Given an ideal $I=\left(m_{1}, \ldots, m_{s}\right)$ in a polynomial ring R, there is a map

$$
\varphi: R^{s} \rightarrow R \quad \text { such that } \operatorname{lm} \varphi=I
$$

The map φ has a kernel K generated by f_{1}, \ldots, f_{r}. There is a map:

$$
\psi: R^{r} \rightarrow R^{s} \quad \text { such that } \operatorname{Im} \psi=K
$$

The starting point: Resolutions

Given an ideal $I=\left(m_{1}, \ldots, m_{s}\right)$ in a polynomial ring R, there is a map

$$
\varphi: R^{s} \rightarrow R \quad \text { such that } \operatorname{lm} \varphi=I
$$

The map φ has a kernel K generated by f_{1}, \ldots, f_{r}. There is a map:

$$
\psi: R^{r} \rightarrow R^{s} \quad \text { such that } \operatorname{Im} \psi=K
$$

By repeating this process, we get a chain complex

$$
0 \rightarrow R^{\beta_{p}} \rightarrow R^{\beta_{p-1}} \rightarrow \cdots \rightarrow R^{\beta_{1}} \rightarrow I \rightarrow 0
$$

where $\beta_{1}=s$
This chain complex is called a resolution of I. The numbers β_{i} are called betti numbers of I

From Algebra to Topology: (De)homogenizing complexes

Let $I=(x, y, z) \subset \mathbb{k}[x, y, z]$. The following complex is a (minimal) resolution of I :

$$
0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
z \\
-y \\
x
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
-y & -z & 0 \\
x & 0 & -z \\
0 & x & y
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
x & y & z
\end{array}\right)} I \rightarrow 0
$$

From Algebra to Topology: (De)homogenizing complexes

Let $I=(x, y, z) \subset \mathbb{k}[x, y, z]$. The following complex is a (minimal) resolution of I :

$$
0 \rightarrow R \xrightarrow{\left(\begin{array}{c}
z \\
-y \\
x
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{ccc}
-y & -z & 0 \\
x & 0 & -z \\
0 & x & y
\end{array}\right)} R^{3} \xrightarrow{\left(\begin{array}{lll}
x & y & z
\end{array}\right)} I \rightarrow 0
$$

Replacing every variable with 1 we get:

$$
0 \rightarrow \mathbb{k} \xrightarrow{\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)} \mathbb{k}^{3} \xrightarrow{\left(\begin{array}{ccc}
-1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)} \mathbb{k}^{3} \xrightarrow{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)} \mathbb{k} \rightarrow 0
$$

which is the chain complex of the 2-simplex (a triangle)

From Topology to Algebra: Taylor's resolution

Let $I=(x, y, z)$ be the same ideal and Δ the 2-simplex. We can label the vertices of Δ by the generators of I, edges by the Icm's of the labels of the vertices and so on.

If we take the chain complex of the simplex above (with labelings) we get the (Taylor) resolution of I

Powers of a simplex

> The $r=1$ case
> I a monomial ideal \Longrightarrow Labeled simplex gives a (sometimes minimal) resolution of I

Upshot: Number of faces of a simplex gives a sharp upper bound on betti numbers of monomial ideals

Powers of a simplex

The $r=1$ case
I a monomial ideal \Longrightarrow Labeled simplex gives a (sometimes minimal) resolution of I

Upshot: Number of faces of a simplex gives a sharp upper bound on betti numbers of monomial ideals

If we replace I by $I r$ on the algebra side, what replaces the simplex? Is this object simplicial? Polyhedral?

The main question

Is there a complex Δ_{q}^{r} such that it supports the resolution of the r-th power of any monomial ideal I generated on q elements, while also giving the minimal resolution for some I^{r} ?

What is known: $r=1,2, q \leq 4$

A picture of $r=2, q=3$

$$
I=\left(m_{1}, m_{2}, m_{3}\right)
$$

The minimal nonfaces for $r=3$

$$
V\left(\Delta_{q}^{3}\right)=\left\{v \in \mathbb{N}^{q}: v_{1}+\cdots+v_{q}=3\right\}
$$

Theorem (CDF-MS, 2024+)

The minimal nonfaces of Δ_{q}^{3} for $q \geq 5$ are (up to permutation)
(1) $(3) 0^{q-1},(0,3) 0^{q-2}$
(2) $(3) 0^{q-1},(0,2,1) 0^{q-3}$
(3) $(3) 0^{q-1},(0,1,1,1) 0^{q-4}$
(4) $(3) 0^{q-1},(1,2) 0^{q-2}$
(5) $(3) 0^{q-1},(1,1,1) 0^{q-3}$
(6) $(2,1) 0^{q-2},(0,1,2) 0^{q-3}$
(3) $(2,1) 0^{\text {q-2 }},(0,1,1,1) 0^{q-4}$
(8) $(2,1) 0^{q-2},(0,0,2,1) 0^{q-4}$
(9) $(2,1) 0^{q-2},(1,0,2) 0^{q-3}$
(10) $(2,1) 0^{q-2},(1,2) 0^{q-2},(0,0,1,1,1) 0^{q-5}$

The vertices and some symmetries

The vertex set of the (simplicial) complex Δ_{q}^{3} we are looking for is the following:

$$
I=\left(m_{1}, m_{2}, m_{3}\right) \text {, the generator } m_{1}^{2} m_{2} \text { of } I^{3} \leftrightarrow(2,1,0) \in \Delta_{3}^{3}
$$

Note that reordering the generating set of I does not affect Δ_{q}^{3}, and in particular

$$
\left\{v_{1}, \ldots, v_{s}\right\} \in \Delta_{q}^{3} \Longleftrightarrow\left\{\sigma v_{1}, \ldots, \sigma v_{s}\right\} \in \Delta_{q}^{3}
$$

for any permutation $\sigma \in S_{q}$

From a graph of monomials to a graph of partitions

Theorem (EK,F,S,S (2023))

After dehomogenizing, the first step of the minimal resolution of the r-th power of any monomial ideal is contained in the first step of the chain complex of a simplicial complex \mathbb{S}_{q}^{r}. This simplicial complex has vertex set

$$
V\left(\mathbb{S}_{q}^{r}\right)=\left\{v \in \mathbb{N}^{q}: v_{1}+\cdots+v_{q}=r\right\}
$$

Theorem (CDF-MS, 2024+)

$$
\Delta_{q}^{3}=S_{q}^{3}
$$

An example: the edge $(3,0),(2,1)$ in \mathbb{S}_{2}^{3}

$a=(3,0)$ and $b=(2,1)$

$$
\begin{gathered}
\sum_{i \in A} x_{i} \leq \max \left(\sum_{i \in A} a_{i}, \sum_{i \in A} b_{i}\right), \quad x_{1}+x_{2}=3 \\
x_{1} \leq 3 \quad(A=\{1\}), \quad x_{2} \leq 1 \quad(A=\{2\}), \quad x_{1}+x_{2}=3
\end{gathered}
$$

The only solutions are $(3,0),(2,1)$, so a, b is indeed an edge

An example: the edge $(3,0),(2,1)$ in \mathbb{S}_{2}^{3}

$a=(3,0)$ and $b=(2,1)$

$$
\begin{gathered}
\sum_{i \in A} x_{i} \leq \max \left(\sum_{i \in A} a_{i}, \sum_{i \in A} b_{i}\right), \quad x_{1}+x_{2}=3 \\
x_{1} \leq 3 \quad(A=\{1\}), \quad x_{2} \leq 1 \quad(A=\{2\}), \quad x_{1}+x_{2}=3
\end{gathered}
$$

The only solutions are $(3,0),(2,1)$, so a, b is indeed an edge
$(3,0,0)$ and $(0,2,1)$ do not form an edge, $(1,1,1)$ is a solution to the system of equations $x_{1}+x_{2}+x_{3}=3$,

$$
x_{1} \leq 3, \quad x_{2} \leq 2, \quad x_{3} \leq 1, \quad x_{1}+x_{2} \leq 3, \quad x_{1}+x_{3} \leq 3, \quad x_{2}+x_{3} \leq 3
$$

Visusalizing $r=3, q=2$

(3,0) (0,3)

The 1-skeleton of $\Delta_{5}^{3}=\mathbb{S}_{5}^{3}$

The graph for $r=4, q=7$

A graph of partitions

Given two partitions $\lambda=\lambda_{1} \ldots \lambda_{s}$ and $\mu=\mu_{1} \ldots \mu_{t}$ of r, consider the vectors

$$
\lambda^{\prime}=(\lambda_{1}, \ldots, \lambda_{s}, \underbrace{0, \ldots, 0}_{t \text { times }}), \quad \mu^{\prime}=(\underbrace{0, \ldots, 0}_{s \text { times }}, \mu_{1}, \ldots, \mu_{t})
$$

we say $\lambda \sim \mu$ if $\lambda^{\prime}, \mu^{\prime}$ is an edge of \mathbb{S}_{s+t}^{r}.

A graph of partitions

Given two partitions $\lambda=\lambda_{1} \ldots \lambda_{s}$ and $\mu=\mu_{1} \ldots \mu_{t}$ of r, consider the vectors

$$
\lambda^{\prime}=(\lambda_{1}, \ldots, \lambda_{s}, \underbrace{0, \ldots, 0}_{t \text { times }}), \quad \mu^{\prime}=(\underbrace{0, \ldots, 0}_{s \text { times }}, \mu_{1}, \ldots, \mu_{t})
$$

we say $\lambda \sim \mu$ if $\lambda^{\prime}, \mu^{\prime}$ is an edge of \mathbb{S}_{s+t}^{r}.

$$
1 \sim 1, \quad 11 \sim 11, \quad 21 \sim 111, \quad 211 \sim 211, \quad 31 \sim 1111
$$

A graph of partitions

Let G_{r} be the graph with vertex set $V\left(G_{r}\right)=\{$ partitions of $r\}$ and $\{\lambda, \mu\} \in E\left(G_{r}\right)$ if and only if $\lambda \sim \mu$.
G_{r} is a simple undirected graph with loops

A graph of partitions

Let G_{r} be the graph with vertex set $V\left(G_{r}\right)=\{$ partitions of $r\}$ and $\{\lambda, \mu\} \in E\left(G_{r}\right)$ if and only if $\lambda \sim \mu$.
G_{r} is a simple undirected graph with loops
Upshot: If we know G_{i} for every $i \leq r$, we can give a sharp upper bound to $\beta_{2}\left(I^{r}\right)$, where I is a monomial ideal generated by q elements.

A graph of partitions: $G_{1}, G_{2}, G_{3}, G_{4}, G_{5}$

Visualizing partitions in the case $r=2, q=3$

Visualizing partitions in the case $r=2, q=3$

$\{2,11\} \notin E\left(G_{2}\right), \quad\{1,1\} \in E\left(G_{1}\right)$

