Homological invariants of ternary graphs

Thiago Holleben
Dalhousie University

April 5, 2023

Independence Complexes

Given a graph $G=(V, E)$, we define its edge ideal

$$
I(G):=\left(x_{i} x_{j} \mid\{i, j\} \in E\right)
$$

and given a simplicial complex Δ, we define its Stanley-Reisner ideal

$$
I_{\Delta}:=\left(x_{i_{1}} \ldots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right)
$$

Independence Complexes

Given a graph $G=(V, E)$, we define its edge ideal

$$
I(G):=\left(x_{i} x_{j} \mid\{i, j\} \in E\right)
$$

and given a simplicial complex Δ, we define its Stanley-Reisner ideal

$$
I_{\Delta}:=\left(x_{i_{1}} \ldots x_{i_{s}} \mid\left\{i_{1}, \ldots, i_{s}\right\} \notin \Delta\right)
$$

Theorem (Hochster's formula)

Let Δ be a simplicial complex. Then

$$
b_{i, \chi_{\tau}}\left(I_{\Delta}\right)=\operatorname{dim} \tilde{H}_{|\tau|-i-2}\left(\Delta_{\tau} ; k\right)
$$

where Δ_{τ} is the restriction of Δ to the vertices in τ

Independence Complexes

Let $R=k\left[x_{1}, \ldots, x_{n}\right], I(G)$ the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ.

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex $\operatorname{Ind}(G)$ if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

(a) A graph G

(b) $\operatorname{Ind}(G)$

Independence Complexes

Let $S=k\left[x_{1}, \ldots, x_{n}\right], I(G)$ the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ.

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex $\operatorname{Ind}(G)$ if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

Useful facts

- If G has an isolated vertex, $\operatorname{Ind}(G)$ is a cone.
- $I(G)=I_{\operatorname{Ind}(G)}$

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3 .

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3 .

A ternary graph with a non-induced 9-cycle

Ternary graphs

Theorem (J. Kim, 2022)
A graph is ternary if and only if $\operatorname{Ind}(G)$ is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

Ternary graphs

Theorem (J. Kim, 2022)

A graph is ternary if and only if $\operatorname{Ind}(G)$ is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

From Hochster's formula we have:

$$
\beta_{i, x_{\tau}}(I(G))=\operatorname{dim}_{k} \tilde{H}_{|\tau|-i-2}\left(\operatorname{lnd}(G)_{\tau} ; k\right)
$$

Ternary graphs

Theorem (J. Kim, 2022)

A graph is ternary if and only if $\operatorname{Ind}(G)$ is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

From Hochster's formula we have:

$$
\beta_{i, x_{\tau}}(I(G))=\operatorname{dim}_{k} \tilde{H}_{|\tau|-i-2}\left(\operatorname{lnd}(G)_{\tau} ; k\right)
$$

Corollary

The betti table of the edge ideal of a ternary graph does not depend on the characteristic of the base field.

Ternary graphs

Let G be a ternary graph.
(1) When is $\operatorname{Ind}(G)$ contractible?

Ternary graphs

Let G be a ternary graph.
(1) When is $\operatorname{Ind}(G)$ contractible?
(2) When $\operatorname{Ind}(G)$ is not contractible, what is the dimension of the sphere $\operatorname{Ind}(G)$ is homotopy equivalent to?

Ternary graphs

Let G be a ternary graph.
(1) When is $\operatorname{Ind}(G)$ contractible?
(2) When $\operatorname{Ind}(G)$ is not contractible, what is the dimension of the sphere $\operatorname{Ind}(G)$ is homotopy equivalent to?
(3) Can we describe projective dimension, depth and regularity of $S / I(G)$ in terms of G ? (these invariants will be characteristic-free)

Setting some notation

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X]=\bigcup_{v \in X} N(v) \bigcup_{v \in X} v$.

Setting some notation

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X]=\bigcup_{v \in X} N(v) \bigcup_{v \in X} v$.

Let G be a graph, $X, Y \subset V(G)$ such that X is independent and $X \cap Y=\emptyset$. We denote by $G(X \mid Y)$ the graph $G-N[X]-Y$.

Forests

Theorem (M. Marietti and D. Testa, 2008)
Let G be a forest. Then $\operatorname{Ind}(G)$ is either contractible or homotopy equivalent to $S^{\gamma(G)-1}$, where $\gamma(G)=\min \{|S| \mid S \subset V(G), N[S]=V(G)\}$ is called the lower dominating number of G.

Forests

Theorem (M. Marietti and D. Testa, 2008)
 Let G be a forest. Then $\operatorname{Ind}(G)$ is either contractible or homotopy equivalent to $S^{\gamma(G)-1}$, where $\gamma(G)=\min \{|S| \mid S \subset V(G), N[S]=V(G)\}$ is called the lower dominating number of G.

How can we determine if the independence complex of a forest is contractible?

A leaf-filtration

Consider the forest F below:

Note that b is adjacent to a leaf

A leaf-filtration

Next note that e is adjacent to a leaf

Now note that k, m and h are adjacent to leaves

A leaf-filtration

After removing the vertices adjacent to k, m and h (and the 3 vertices) we get the empty graph.

A leaf-filtration

We call the sequence of subgraphs:
$F(\emptyset \mid \emptyset), F(b \mid \emptyset), F(b, e \mid \emptyset), F(b, e, k \mid \emptyset), F(b, e, k, m \mid \emptyset), F(b, e, k, m, h \mid \emptyset)=\emptyset$
A leaf-filtration of F.

A leaf-filtration

We call the sequence of subgraphs:
$F(\emptyset \mid \emptyset), F(b \mid \emptyset), F(b, e \mid \emptyset), F(b, e, k \mid \emptyset), F(b, e, k, m \mid \emptyset), F(b, e, k, m, h \mid \emptyset)=\emptyset$
A leaf-filtration of F.

Theorem

A forest F admits a leaf-filtration if and only if its independence complex is not contractible. Moreover, in that case the empty graph can be written as

$$
F(X \mid \emptyset)=\emptyset
$$

where X is the set of vertices adjacent to a leaf in each step. We then have

$$
\operatorname{Ind}(F) \cong S^{|X|-1}
$$

A forest that does not have a leaf-filtration

A forest that does not have a leaf-filtration

After this step, the vertex a is isolated

Back to ternary graphs

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset \mid S)=G-S$ is a forest. Then whenever $A \subset S$ is an independent set

$$
G(A \mid S \backslash A)=G-N[A]-S \backslash A
$$

is also a forest.

Back to ternary graphs

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset \mid S)=G-S$ is a forest. Then whenever $A \subset S$ is an independent set

$$
G(A \mid S \backslash A)=G-N[A]-S \backslash A
$$

is also a forest.

Definition

Let k be the number of forests of the form $G(A \mid S \backslash A)$ that have a non contractible independence complex. We call $i(G)=(-1)^{k}$ the sign of G.

Back to ternary graphs

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset \mid S)=G-S$ is a forest. Then whenever $A \subset S$ is an independent set

$$
G(A \mid S \backslash A)=G-N[A]-S \backslash A
$$

is also a forest.

Definition

Let k be the number of forests of the form $G(A \mid S \backslash A)$ that have a non contractible independence complex. We call $i(G)=(-1)^{k}$ the sign of G.

Theorem

The independence complex of a ternary graph G is contractible if and only if $i(G)=1$.

Example sign

Let G be the following graph and $S=\{e, b\}$

Example sign

The forests we get of the form $G(A \mid S \backslash A)$ are:

$G(b, e \mid \emptyset)$ has a non contractible independence complex

Example sign

The forests we get of the form $G(A \mid S \backslash A)$ are:

$G(e \mid b)$ has a contractible independence complex

Example sign

The forests we get of the form $G(A \mid S \backslash A)$ are:
d

$G(b \mid e)$ has a contractible independence complex

Example sign

The forests we get of the form $G(A \mid S \backslash A)$ are:

$G(\emptyset \mid b, e)$ has a contractible independence complex, so $i(G)=(-1)^{1}$

Filtrations

Let G be a ternary graph and $S=\left\{v_{1}, \ldots, v_{s}\right\}$ a set of vertices such that $G-S$ is a forest. We can think of all the graphs $G(A \mid B)$ with A, B disjoint subsets of S as vertices of the following tree, the root being $G=G(\emptyset \mid \emptyset)$

Filtrations

A path from the root to one of the leaves of the tree such that every graph that is the label of a vertex in the middle of the path has a non contractible independence complex is called a filtration of G

Back to Commutative Algebra

Let G be a ternary graph with non contractible independence complex and

$$
\mathcal{F}: G_{0}, \ldots, G_{s}
$$

a filtration of G.

Notation

(1) The vertex deletion number of \mathcal{F} is $\operatorname{del}(\mathcal{F})=\left|\left\{i \mid G_{i}=G_{i-1}-v_{i}\right\}\right|$
(2) The deleted neighborhood of \mathcal{F} is $N(\mathcal{F})=\left\{v_{i} \mid G_{i}=G_{i-1}-N\left[v_{i}\right]\right\}$
(3) The depth of \mathcal{F} is $\operatorname{depth}(\mathcal{F})=|N(\mathcal{F})|$

Back to Commutative Algebra

Let G be a ternary graph with non contractible independence complex and

$$
\mathcal{F}: G_{0}, \ldots, G_{s}
$$

a filtration of G.

Notation

(1) The vertex deletion number of \mathcal{F} is $\operatorname{del}(\mathcal{F})=\left|\left\{i \mid G_{i}=G_{i-1}-v_{i}\right\}\right|$
(2) The deleted neighborhood of \mathcal{F} is $N(\mathcal{F})=\left\{v_{i} \mid G_{i}=G_{i-1}-N\left[v_{i}\right]\right\}$
(3) The depth of \mathcal{F} is $\operatorname{depth}(\mathcal{F})=|N(\mathcal{F})|$

Theorem

The independence complex of G is homotopy equivalent to $S^{\operatorname{depth}(\mathcal{F})-1}$.

Back to Commutative Algebra

Let G be a ternary graph with non contractible independence complex and

$$
\mathcal{F}: G_{0}, \ldots, G_{s}
$$

a filtration of G.

Notation

(1) The vertex deletion number of \mathcal{F} is $\operatorname{del}(\mathcal{F})=\left|\left\{i \mid G_{i}=G_{i-1}-v_{i}\right\}\right|$
(2) The deleted neighborhood of \mathcal{F} is $N(\mathcal{F})=\left\{v_{i} \mid G_{i}=G_{i-1}-N\left[v_{i}\right]\right\}$
(3) The depth of \mathcal{F} is $\operatorname{depth}(\mathcal{F})=|N(\mathcal{F})|$

Theorem

- $\operatorname{pd}(R / I(G))=\operatorname{del}(\mathcal{F})+\sum_{v \in N(\mathcal{F})} \operatorname{deg} v$
- $\operatorname{depth}(R / I(G))=\operatorname{depth}(\mathcal{F})$

In particular, the top betti number comes from the top monomial in the LCM lattice

