Homological invariants of ternary graphs

Thiago Holleben

Dalhousie University

April 5, 2023

Independence Complexes

Given a graph G = (V, E), we define its edge ideal

$$I(G) := (x_i x_j | \{i, j\} \in E)$$

and given a simplicial complex Δ , we define its Stanley-Reisner ideal

$$I_{\Delta} := (x_{i_1} \dots x_{i_s} | \{i_1, \dots, i_s\} \notin \Delta)$$

Given a graph G = (V, E), we define its edge ideal

$$I(G) := (x_i x_j | \{i, j\} \in E)$$

and given a simplicial complex Δ , we define its Stanley-Reisner ideal

$$I_{\Delta} := (x_{i_1} \dots x_{i_s} | \{i_1, \dots, i_s\} \not\in \Delta)$$

Theorem (Hochster's formula)

Let Δ be a simplicial complex. Then

$$b_{i,x_{\tau}}(I_{\Delta}) = \dim \tilde{H}_{|\tau|-i-2}(\Delta_{\tau};k)$$

where Δ_{τ} is the restriction of Δ to the vertices in τ

Independence Complexes

Let $R = k[x_1, ..., x_n]$, I(G) the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ .

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex Ind(G) if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

Let $S = k[x_1, ..., x_n]$, I(G) the edge ideal of a graph G and I_{Δ} the Stanley-Reisner ideal of Δ .

Independence complex of G

A set $S \subset V(G)$ is a face of the simplicial complex Ind(G) if and only if S is an independent set of G, that is, none of the edges of G are between elements of S.

Useful facts

- If G has an isolated vertex, Ind(G) is a cone.
- $I(G) = I_{Ind(G)}$

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3.

Ternary graphs

Ternary graphs

A graph G is ternary if it does not contain any induced cycle of length divisible by 3.

A ternary graph with a non-induced 9-cycle

Theorem (J. Kim, 2022)

A graph is ternary if and only if Ind(G) is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

Theorem (J. Kim, 2022)

A graph is ternary if and only if Ind(G) is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

From Hochster's formula we have:

$$\beta_{i,x_{\tau}}(I(G)) = \dim_{k} \tilde{H}_{|\tau|-i-2}(\operatorname{Ind}(G)_{\tau};k)$$

Theorem (J. Kim, 2022)

A graph is ternary if and only if Ind(G) is either contractible or homotopy equivalent to a sphere for every induced subgraph G.

From Hochster's formula we have:

$$\beta_{i,x_{\tau}}(I(G)) = \dim_k \tilde{H}_{|\tau|-i-2}(\operatorname{Ind}(G)_{\tau};k)$$

Corollary

The betti table of the edge ideal of a ternary graph does not depend on the characteristic of the base field.

Let G be a ternary graph.

• When is Ind(G) contractible?

- Let G be a ternary graph.
 - When is Ind(G) contractible?
 - When Ind(G) is not contractible, what is the dimension of the sphere Ind(G) is homotopy equivalent to?

- Let G be a ternary graph.
 - When is Ind(G) contractible?
 - When Ind(G) is not contractible, what is the dimension of the sphere Ind(G) is homotopy equivalent to?
 - Can we describe projective dimension, depth and regularity of S/I(G) in terms of G? (these invariants will be characteristic-free)

Given a graph G and an independent subset $X \subset V(G)$, we set $N[X] = \bigcup_{v \in X} N(v) \bigcup_{v \in X} v.$ Given a graph G and an independent subset $X \subset V(G)$, we set $N[X] = \bigcup_{v \in X} N(v) \bigcup_{v \in X} v.$

Let G be a graph, $X, Y \subset V(G)$ such that X is independent and $X \cap Y = \emptyset$. We denote by G(X|Y) the graph G - N[X] - Y.

Theorem (M. Marietti and D. Testa, 2008)

Let G be a forest. Then Ind(G) is either contractible or homotopy equivalent to $S^{\gamma(G)-1}$, where $\gamma(G) = min\{|S| \mid S \subset V(G), N[S] = V(G)\}$ is called the lower dominating number of G.

Theorem (M. Marietti and D. Testa, 2008)

Let G be a forest. Then Ind(G) is either contractible or homotopy equivalent to $S^{\gamma(G)-1}$, where $\gamma(G) = min\{|S| \mid S \subset V(G), N[S] = V(G)\}$ is called the lower dominating number of G.

How can we determine if the independence complex of a forest is contractible?

A leaf-filtration

Consider the forest F below:

Note that b is adjacent to a leaf

A leaf-filtration

Next note that e is adjacent to a leaf

Now note that k, m and h are adjacent to leaves

After removing the vertices adjacent to k, m and h (and the 3 vertices) we get the empty graph.

We call the sequence of subgraphs:

 $F(\emptyset|\emptyset), F(b|\emptyset), F(b, e|\emptyset), F(b, e, k|\emptyset), F(b, e, k, m|\emptyset), F(b, e, k, m, h|\emptyset) = \emptyset$ A leaf-filtration of *F*. We call the sequence of subgraphs:

 $F(\emptyset|\emptyset), F(b|\emptyset), F(b, e|\emptyset), F(b, e, k|\emptyset), F(b, e, k, m|\emptyset), F(b, e, k, m, h|\emptyset) = \emptyset$

A leaf-filtration of F.

Theorem

A forest F admits a leaf-filtration if and only if its independence complex is not contractible. Moreover, in that case the empty graph can be written as

 $F(X|\emptyset) = \emptyset$

where X is the set of vertices adjacent to a leaf in each step. We then have

 $\operatorname{Ind}(F) \cong S^{|X|-1}$

A forest that does not have a leaf-filtration

A forest that does not have a leaf-filtration

After this step, the vertex *a* is isolated

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset|S) = G - S$ is a forest. Then whenever $A \subset S$ is an independent set

$$G(A|S \setminus A) = G - N[A] - S \setminus A$$

is also a forest.

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset|S) = G - S$ is a forest. Then whenever $A \subset S$ is an independent set

$$G(A|S \setminus A) = G - N[A] - S \setminus A$$

is also a forest.

Definition

Let k be the number of forests of the form $G(A|S\setminus A)$ that have a non contractible independence complex. We call $i(G) = (-1)^k$ the sign of G.

Let G be a ternary graph and $S \subset V(G)$ be such that $G(\emptyset|S) = G - S$ is a forest. Then whenever $A \subset S$ is an independent set

$$G(A|S \setminus A) = G - N[A] - S \setminus A$$

is also a forest.

Definition

Let k be the number of forests of the form $G(A|S\setminus A)$ that have a non contractible independence complex. We call $i(G) = (-1)^k$ the sign of G.

Theorem

The independence complex of a ternary graph G is contractible if and only if i(G) = 1.

Let G be the following graph and $S = \{e, b\}$

The forests we get of the form $G(A|S \setminus A)$ are:

 $G(b, e|\emptyset)$ has a non contractible independence complex

The forests we get of the form $G(A|S \setminus A)$ are:

G(e|b) has a contractible independence complex

The forests we get of the form $G(A|S \setminus A)$ are:

G(b|e) has a contractible independence complex

The forests we get of the form $G(A|S \setminus A)$ are:

 $G(\emptyset|b,e)$ has a contractible independence complex, so $i(G) = (-1)^1$

Filtrations

Let G be a ternary graph and $S = \{v_1, \ldots, v_s\}$ a set of vertices such that G - S is a forest. We can think of all the graphs G(A|B) with A, B disjoint subsets of S as vertices of the following tree, the root being $G = G(\emptyset|\emptyset)$

Filtrations

A path from the root to one of the leaves of the tree such that every graph that is the label of a vertex in the middle of the path has a non contractible independence complex is called a filtration of G

Let G be a ternary graph with non contractible independence complex and

$$\mathcal{F}: G_0, \ldots, G_s$$

a filtration of G.

Notation

• The vertex deletion number of \mathcal{F} is del $(\mathcal{F}) = |\{i \mid G_i = G_{i-1} - v_i\}|$

3 The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \mid G_i = G_{i-1} - N[v_i]\}$

• The *depth* of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Let G be a ternary graph with non contractible independence complex and

$$\mathcal{F}: G_0, \ldots, G_s$$

a filtration of G.

Notation

• The vertex deletion number of \mathcal{F} is $del(\mathcal{F}) = |\{i \mid G_i = G_{i-1} - v_i\}|$

- **2** The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \mid G_i = G_{i-1} N[v_i]\}$
- The *depth* of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Theorem

The independence complex of G is homotopy equivalent to $S^{\text{depth}(\mathcal{F})-1}$.

Back to Commutative Algebra

Let G be a ternary graph with non contractible independence complex and

$$\mathcal{F}: G_0, \ldots, G_s$$

a filtration of G.

Notation

- The vertex deletion number of \mathcal{F} is del $(\mathcal{F}) = |\{i \mid G_i = G_{i-1} v_i\}|$
- **2** The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \mid G_i = G_{i-1} N[v_i]\}$
- The *depth* of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Theorem

•
$$pd(R/I(G)) = del(\mathcal{F}) + \sum_{v \in N(\mathcal{F})} deg v$$

• depth(R/I(G)) = depth(F)

In particular, the top betti number comes from the top monomial in the LCM lattice