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Stanley-Reisner, Facet (and incidence) ideals

A simplicial complex ∆ on vertex set [n] is a collection of subsets ∆ of [n]
such that τ ⊂ σ ∈ ∆ =⇒ τ ∈ ∆. We write ∆ = 〈F1, . . . ,Fs〉 if
F1, . . . ,Fs are the facets (maximal subsets) of ∆.
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∆ = 〈{1, 2, 3}, {2, 3, 4}, {2, 4, 5}, {5, 4, 6}〉

If we remove every 2-face of ∆ (triangles), we get the complex ∆(1) which
consists of the same vertices and edges of ∆, but no triangles
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Stanley-Reisner, Facet (and incidence) ideals

Let S = k[x1, . . . , xn] and ∆ = 〈F1, . . . ,Fs〉 a simplicial complex with
vertex set [n].

The Stanley-Reisner ideal of ∆ is the ideal

N (∆) = (
∏
i∈B

xi : B 6∈ ∆) ⊂ S

The Facet ideal of ∆ is the ideal

F(∆) = (
∏
i∈F1

xi , . . . ,
∏
i∈Fs

xi ) ⊂ S

Both constructions give bijections between simplicial complexes and
squarefree monomial ideals
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Stanley-Reisner, Facet (and incidence) ideals

N (∆) = (
∏
i∈B

xi : B 6∈ ∆), F(∆) = (
∏
i∈F1

xi , . . . ,
∏
i∈Fs

xi )
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∆
N (∆)

F(∆)

(x1x4, x1x5, x3x5, x1x6, x2x6, x3x6)

(x1x2x3, x2x3x4, x2x4x5, x4x5x6)
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Lefschetz properties

Let I be a monomial ideal of S = k[x1, . . . , xn] such that A = S/I is
artinian, and L = x1 + · · ·+ xn ∈ S1.

Definition
We say A satisfies the weak Lefschetz property (WLP) if the
multiplication maps

×L : Ai → Ai+1

have full rank for every i .
If moreover the maps

×Lj : Ai → Ai+j

have full rank for every i , j , we say A satisfies the strong Lefschetz
property (SLP)
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A motivation from Combinatorics

Proposition
If A is an algebra that satisfies the WLP, then

dimA1 ≤ dimA2 ≤ · · · ≤ dimAk ≥ · · · ≥ dimAd

for some k , in other words, the h-vector of A is unimodal.

We are particularly interested in algebras of the form:

A(∆) =
S

(N (∆), x2
1 , . . . , x

2
n )

where ∆ is a simplicial complex.

dimA(∆)i = fi−1 = the number of i − 1 dimensional faces of ∆
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An example with the SLP
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∆
N (∆)

(x1x4, x1x5, x3x5, x1x6, x2x6, x3x6)

The algebra

A(∆) = k[x1, . . . , x6]/(N (∆), x2
1 , x

2
2 , x

2
3 , x

2
4 , x

2
5 , x

2
6 )

has the SLP whenever k is not a field of characteristic 2.
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The bipartite property in Combinatorial Commutative
Algebra

Let I (G ) = (xixj : ij is an edge of G ) be the edge ideal of G

Not bipartite ⇐⇒ The rational map defined by I (G ) is birational
⇐⇒ I (G ) is of linear type

⇐⇒ I (G )(m) 6= I (G )m for some m

⇐⇒ Incidence matrix has full rank

But what can we say for simplicial complexes in general?
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F(∆) Rees =⇒ N (∆) Lefschetz

Theorem (-, 2024)
If ∆ is connected and pure of dimension 2, then:

F(∆) is of linear type =⇒ A(∆) has the SLP

Which properties of the Rees algebra of F(∆) can be translated into
information on the Lefschetz properties of N (∆)?
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From linear type to Lefschetz properties: sufficient
conditions visualized

Linear type results
can’t be used

Linear type results
imply WLP in every
odd characteristic

SLP in every odd
characteristc
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Symbolic powers

Symbolic powers of squarefree monomial ideals
Let F(∆) ⊂ S = k[x1, . . . , xn] be a squarefree monomial ideal. The m-th
symbolic power of F(∆) is:

F(∆)(m) =
⋂

P∈Ass(F(∆))

Pm

If F(∆) = (x1x2, x2x3, x1x3), then

F(∆)(2) = (x1x2x3, x
2
1x

2
2 , x

2
2x

2
3 , x

2
1x

2
3 ) 6= F(∆)2
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Symbolic Powers and Lefschetz properties are not
compatible

Theorem (-, 2024)
Let ∆ be a pure simplicial complex with at least as many facets as vertices.

If F(∆)(m) = F(∆)m for all m, then A(∆) fails the SLP.

Corollary (-, 2024)
Let G be a bipartite graph with n ≥ 5 vertices and w(G ) the whiskered
graph. Let

I (w(G )) = (xi1,1 , . . . , xi1,n)
⋂
· · ·
⋂

(xir,1 , . . . , xir,n)

and ∆ = 〈{i1,1, . . . , i1,n}, . . . , {ir ,1, . . . , ir ,n}〉. Then A(∆) fails the SLP.
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The symbolic defect: a horizontal perspective

Symbolic Defect sequence of an ideal (GGSVT, 2018)
Let I be an ideal, define

sdefect(I ,m) = the minimal number of generators of I (m)/Im

for every m.

Theorem (GGSVT, 2018)
If I is the ideal generated by every squarefree monomial ideal of degree d in
n variables, then

sdefect(I , 2) =

(
n

d + 1

)
In other words, sdefect(I , 2) is the number of d-faces of the simplex on n
vertices.
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Symbolic defect polynomials

sdefect(F(∆),m)

...

sdefect(F(∆), 4)

sdefect(F(∆), 3)

sdefect(F(∆), 2)
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Symbolic defect polynomials

sdefect(F(∆(1),m) · · · sdefect(F(∆(d − 1),m) sdefect(F(∆),m)

...
. . .

...
...

sdefect(F(∆(1), 4) · · · sdefect(F(∆(d − 1), 4) sdefect(F(∆), 4)

sdefect(F(∆(1), 3) · · · sdefect(F(∆(d − 1), 3) sdefect(F(∆), 3)

sdefect(F(∆(1), 2) · · · sdefect(F(∆(d − 1), 2) sdefect(F(∆), 2)
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Symbolic defect polynomials

The second symbolic defect polynomial
The second symbolic defect polynomial of a pure simplicial complex ∆
is:

µ(∆, 2, x) =
∑
i

sdefect(F(∆(i)), 2)x i+2

Theorem (-, 2024)
Let ∆ be a flag simplicial complex.

The coefficient of x3 in µ(∆, 2, x) is equal to the number of triangles
of ∆.
The sequence of coefficients of µ(∆, 2, x) has no internal zeros.
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A couple of examples

Let N (∆) = (xixi+1 : 1 ≤ i ≤ 14) ⊂ k[x1, . . . , x15]. Then

µ(∆, 2, x) = 286x3 + 495x4 + 462x5 + 210x6 + 36x7 + x8

and the f -vector of ∆ is:

(1, 15, 91, 286, 495, 462, 210, 36, 1)
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A couple of examples

The Stanley-Reisner complex ∆ of the edge ideal of the graph above has
µ(∆, 2, x) = 17x3 + 5x4

f -vector: (1, 9, 22, 17, 4)

So the two are not always the same
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Unimodality? Log-concavity? f -vectors?

Questions
When is the second symbolic defect polynomial of a complex equal to
its f -vector?
When is the second symbolic defect polynomial of a complex
unimodal?

Do the questions above hold when ∆ is the independence complex of a
forest?
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