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Summary
The Rees Algebra of an ideal is an important object in Commutative Algebra that contains information about

several invariants. In particular, when I is either an equigenerated monomial ideal or the jacobian ideal of a
product of linear forms, the positivity of some invariants can be determined by the rank of a matrix. We use the
theory of Lefschetz properties to define polynomials with nonnegative coefficients associated to combinatorial
objects. We then give examples where these polynomials become well known polynomials in Combinatorics.

Introduction
It is a well known phenomena that many multiplicity theories have connections to volumes of con-
vex bodies. When I is an equigenerated monomial ideal, the ε, j and mixed multiplicities can be
computed as mixed volumes of convex bodies or regions inRn. In particular, to determine whether
these multiplicities are positive or not, it is only necessary to compute the rank of a specific matrix
associated to the convex body.

The remark above is a very specific case of well known results relating positivity of multiplicities
and analytic spread being maximal.

When I is an equigenerated squarefree monomial ideal, the same matrix that is used to determine
whether multiplicities are positive can be used as a sufficient condition for symbolic powers to not
be equal to ordinary powers.

The theory of Lefschetz properties has many connections to Combinatorics, Geometry and Topol-
ogy and its main focus is to show that some linear maps arising as multiplication maps in Artinian
algebras have full rank.

Here, we apply results from Lefschetz properties to define polynomials made out of algebraic
invariants that have positive coefficients.

Pure O-sequences and pure simplicial complexes
Definition 1. A simplicial complex ∆ on vertex set V is a collection of subsets of V such that if
σ ∈ ∆ and τ ⊂ σ, then τ ∈ ∆. Elements in ∆ are called its faces, maximal elements are called
facets. We say ∆ is pure if every facet has the same size. If the maximum size of a face of ∆ is i,
we say ∆ is i− 1 dimensional.
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A pure simplicial complex ∆ with facets abc, bcf, bfe, fge, dge, adg

Theorem 2 (Hausel, [4]). Let A be an Artinian level algebra of socle degree k over a field of char-
acteristic zero defined by a monomial ideal and L a general linear form. Then the following maps
are injective

×Lk−2i : Ai→ Ak−i for 2i < k

We apply the result above to show the following.

Theorem 3. Let ∆ be a pure simplicial complex with maximal facets of size d on vertex set V .
Then the analytic spread of the ideals generated by faces of size i of ∆ for 1 ≤ i ≤ d − 1 is equal
to |V |. In particular, these ideals have maximal analytic spread.

Symbolic powers and f -vectors
Let I be a squarefree monomial ideal in k[x1, . . . , xn] and ∆ its Stanley-Reisner complex. The
m-th symbolic power of I can be computed as

I(m) =
⋂
F⊂∆

(xi : i 6∈ F )m

where F runs over facets of ∆. It is known (see [7]) that if the analytic spread of I is n, there
exists t such that

I(t) 6= It.

Corollary 4. Let ∆ be a pure simplicial complex of dimension d and Ii the ideal generated by the
faces of dimension i of ∆. Then I(2)

i 6= I2
i for every 1 ≤ i ≤ d− 1.

In order to measure how different the symbolic powers of an ideal are from ordinary powers, in
[3] Galetto et al. defined the symbolic defect of an ideal as

sdefect(I,m) = µ(I(m)/Im) where µ(−) denotes the minimal number of generators.

Definition 5. Due to the corollary above we define the m-th symbolic defect polynomial of a
simplicial complex ∆ of dimension d as

µm(∆, t) = sdefect(I1, 2) + sdefect(I2, 2)t + · · · + sdefect(Id−1, 2)td−2

Corollary 6. The second symbolic defect polynomial of ∆ has nonzero coefficients. Moreover, the
number of i + 1-faces of ∆ is a lower bound for sdefect(Ii, 2).

Example 7. Let G be the following graph.
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Then the second symbolic defect polynomial of the Stanley-Reisner complex ∆ of G is

µ2(∆, t) = 38 + 26t + 9t2 + 1t3

and the f -vector of ∆ is (1, 9, 28, 38, 26, 9, 1).

Question 8. Let ∆ be the Stanley-Reisner complex of a forest. Are the coefficients of µ2(∆, t)
equal to the face numbers of ∆?

Multiplicities and Eulerian numbers
The convex hull of lattice points that consist of k ones and n − k zeros in Rn is called the n, k-
hypersimplex. In Combinatorics, Eulerian numbers denoted by A(n, k) count the numbers of
permutations of n elements that have exactly k ascents. A standard fact says the volume of the
n, k-hypersimplex is equal to A(n, k).

In [1], Alilooee et al. noticed that mixed multiplicities of squarefree monomial ideals generated
by all squarefree monomials of degree k correspond to A(n, k) and the more general mixed Eule-
rian numbers. Notice that these ideals can be seen as ideals generated by the i-faces of a simplex,
for i = 0, . . . , d. When ∆ is a pure simplicial complex, due to Theorem 3 and the results in [2, 8]
we show the following.

Corollary 9. Let ∆ be a pure simplicial complex of dimension d in n vertices. For i = 0, . . . , d−1,
let Ii denote the ideal generated by the i faces of ∆. Then

e(c0,...,cd−1)(I0|I1, . . . , Id−1) > 0 for every c0 + · · · + cd−1 = n− 1

where the numbers above are the mixed multiplicities of I0, . . . , Id−1.

Similarly, j and ε multiplicities of the ideals Ii defined above are also positive.

The nonmonomial case
In [5], June Huh showed that mixed multiplicities of Jacobian ideals of products of linear forms
are equal to coefficients of a combinatorial polynomial known as the characteristic polynomial of a
matroid. In particular, we may compute the analytic spread of jacobian ideals of products of linear
forms as follows.

Example 10. Consider h = xyz(x + z) ∈ k[x, y, z]. Let M be the following matrix:


x y z

x 1 0 0
y 0 1 0
z 0 0 1
x + z 1 0 1


Then the analytic spread of the Jacobian ideal of h is the rank of M .

Definition 11. Let A be an artinian graded algebra of socle degree d over a field of characteristic
zero satisfying the Strong Lefschetz Property and L a linear form that is a Lefschetz element.

Then to each map ×Li : A1 → Ai+1, there is a product of linear forms hi as defined above. We
define the linear skeleton of the pair (A,L) as the sequence of jacobian ideals

(Jh1, . . . , Jhd).

Similarly to Theorem 3, every pair (A,L) gives rise to many sequences of positive integers.
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