Homological invariants of ternary graphs **Thiago Holleben** Dalhousie University hollebenthiago@dal.ca

DALHOUSIE UNIVERSITY

Summary

In 2022, Jinha Kim proved a conjecture by Engstrom that states the independence complex of graphs with no induced cycle of length divisible by 3 is either contractible or homotopy equivalent to a sphere, which means the minimal free resolution of the edge ideal of these graphs is characteristic-free. We apply this result to give a combinatorial description of projective dimension and depth of the edge ideal of these graphs. As a consequence, we give a complete description of the multigraded betti numbers of edge ideals of ternary graphs in terms of its combinatorial structure and classify ternary graphs whose independence complex is contractible.

Preliminaries

Let G be a graph. A subset S of the vertices of G is said to be **independent** if there are no edges between elements of S. Since subsets of of independent sets are also independent, the independent sets of G have a simplicial complex structure. **Definition 1.** Let G be a graph. The independence complex of G, denoted by Ind(G) is the simplicial complex on vertex set V(G) and the faces are the independent sets of G. Let S be a subset of the vertices of G, the induced subgraph G[S]of G is the graph on vertex set S and edges $E[S] = \{uv | uv \in E(G) \text{ and } u, v \in S\}.$

The set $N[S] := \bigcup (N(v) \cup v)$ is called the closed neighborhood of S. We write G - S for the induced subgraph $v \in S$ $G[V(G)\backslash S].$

Filtrations and signs of ternary graphs

One advantage of stating Theorem 12 in the language of leaf-filtrations, is that as a consequence of Theorem 5 we can generalize the notion of leaf-filtrations to ternary graphs, and get similar results. This is because both classes of graphs (forests and ternary graphs) satisfy the following two properties:

1. Every induced subgraph of a ternary graph (resp. forest) is also a ternary graph (resp. forest).

2. Every independence complex of a ternary graph (resp. forest) is either contractible or homotopy equivalent to a sphere.

Theorem 13. Let G be a ternary graph and $S = \{v_1, \ldots, v_k\}$ a set of vertices such that G - S is a forest. Let $A, B \subset S$ be such that $A \cup B = S$ and $A \cap B = \emptyset$. Let j(S) denote the number of forests G - N[A] - B where A is an independent set and G - N[A] - B does not have hidden SBLs or isolated vertices. Then the independence complex of G is contractible if and only if j(S) is even.

Corollary 14. Let G be a ternary graph and S any subset of vertices such that G - S is a forest. Then the number $i(G) = (-1)^{j(S)}$ is an invariant of G. We call it the sign of G.

Example 15. Let G be the following graph:

Example 2. A graph and its independence complex:

Given a graph G on vertex set $\{x_1, \ldots, x_n\}$ and a field k, one can define the edge ideal of G as follows:

 $I(G) \subset k[x_1, \dots, x_n], \ I(G) = (x_i x_j | x_i x_j \in E(G))$

The connection between independence complexes and free resolutions of edge ideals follows from the theorem below: **Theorem 3.** Let G be a graph and $x_{\tau} = \prod x_i$ where $\tau \subset V(G)$. Then the multigraded betti numbers $b_{i,m}(R/I(G))$ of the quotient of the edge ideal of G are given by

 $b_{i,x_{\tau}}(R/I(G)) = \dim H_{|\tau|-i-1}(\operatorname{Ind}(G[\tau]);k)$

where $R = k[x_1, ..., x_n]$ and H denotes reduced simplicial homology.

Definition 4. A graph G is called **ternary** if G[S] is not a cycle of length divisible by 3 for any subset S of the vertices of G.

In 2022, J. Kim proved the following theorem:

Theorem 5 (J. Kim (2022)). A graph G is ternary if and only if the independence complex of every induced subgraph of G is either contractible or homotopy equivalent to a sphere.

Although the theorem completely describes the independence complexes of ternary graphs, it does not say when the independence complex of a ternary graph is contractible, or the dimension of the sphere when it is not. In the particular case when the graph G is a forest, the dimension of the sphere is known by the following theorem:

Theorem 6 (M. Marietti, D. Testa (2008)). Let F be a forest. Then Ind(F) is either contractible or homotopy equivalent to $S^{\gamma(F)-1}$ where $\gamma(F) = \min\{|S| \mid S \subset V(F), N[S] = V(F)\}.$

Then G - c is a forest, and since G - c does not have hidden SBLs and G - N[c] has an isolated vertex, the independence complex of G is not contractible. In particular $j(\{c\}) = 1$ and thus the sign of G is -1.

Definition 16. Let G be a ternary graph with a non contractible independence complex. A filtration \mathcal{F} of G is a sequence of subgraphs

$$\mathcal{F} := G_0 \supset G_1 \supset G_2 \supset \dots \supset G_q \tag{1}$$

with a sequence of vertices $v_0 \in V(G_0), \ldots, v_{q-1} \in V(G_{q-1})$ such that $1. G_0 = G$

2. $G_{i+1} \in \{G_i - v_i, G_i - N[v_i]\}$, where $\tilde{H}_i(\text{Ind}(G_i)) \cong \tilde{H}_{i-k_i}(\text{Ind}(G_{i+1}))$ for some $k_i \in \{0, 1\}, i \ge 0$.

We say a filtration is maximal if $G_q = \emptyset$. For every filtration \mathcal{F} of G we have the following definitions:

1. The vertex deletion neighborhood of \mathcal{F} is $del(\mathcal{F}) = |\{i \mid G_{i+1} = G_i - v_i\}|$

2. The deleted neighborhood of \mathcal{F} is $N(\mathcal{F}) = \{v_i \in G_i \mid G_{i+1} = G_i - N[v_i]\}$ 3. The depth of \mathcal{F} is depth $(\mathcal{F}) = |N(\mathcal{F})|$

Example 17. The following two sequences of subgraphs form two different maximal filtrations of the same graph G:

Using Theorem 5, we proved the following:

Theorem 7 (S. Faridi, T. Holleben (2022)). Let G be a ternary graph.

1. If $\operatorname{Ind}(G)$ is not contractible, then it is homotopy equivalent to $S^{\operatorname{depth}(\mathcal{F})-1}$, where \mathcal{F} is any maximal filtration of G. Moreover, for every maximal filtration \mathcal{F} the following are invariants of G:

(a) $pd(G) := del(\mathcal{F}) + \sum deg v_i$, where $deg v_i$ is the degree of v_i as a vertex of G_i . $v_i \in N(\mathcal{F})$

(b) $\operatorname{depth}(G) := \operatorname{depth}(\mathcal{F})$

2. If Ind(G) is contractible, we set the following notation:

(a) $pd(G) := max\{pd(H)|H \text{ is an induced subgraph with non contractible independence complex}\}$ (b) depth(G) := |V(G)| - pd(G)

Leaf-filtrations and SBLs

Let G be a graph. Then for every vertex v we have the well-known Mayer-Vietoris exact sequence for independence complexes:

 $\cdots \to H_i(\operatorname{Ind}(G - N[v])) \to H_i(\operatorname{Ind}(G - v)) \to H_i(\operatorname{Ind}(G)) \to H_{i-1}(\operatorname{Ind}(G - N[v])) \to \cdots$

Definition 8. Let F be a forest. A **leaf-filtration** of F is a sequence of subgraphs:

 $F = F_0 \supset F_1 \supset F_2 \supset \cdots \supset F_q = \emptyset$

where $F_i = F - N[\{v_0, ..., v_{i-1}\}] = F_{i-1} - N[v_{i-1}]$ and v_{i-1} is adjacent to a leaf of F_{i-1} for every i = 1, ..., q-1. If F_{q-1} is a graph with no edges, we define $F_q = F_{q-1} - V(F_{q-1}) = \emptyset$.

Definition 9. Let G be a graph. An edge uv of G is said to be stuck between leaves or SBL for short, if both u and vhave degree at least 2 and are adjacent to leaves (vertices of degree one).

In particular, we have $depth(\mathcal{F}) = |\{a, c\}| = depth(\mathcal{F}')$.

Applications to Commutative Algebra

Applying Theorem 3 to the theorems above we get the following result:

Theorem 18. Let $R = k[x_1, \ldots, x_n]$ and I(G) the edge ideal of a ternary graph. For every squarefree monomial m let $G[m] = G[\{x_i \mid x_i \mid m\}],$ then

$$b_{i,m}(R/I(G)) = \begin{cases} 1 & \text{if } i(G[m]) = -1 \text{ and } i = pd(G[m]) \\ 0 & \text{otherwise} \end{cases}$$

In particular,

and

Example 10. The graphs below form a leaf-filtration of F, where $v_0 = c$ and $v_1 = f$.

F - N[c] $F - N[\{c, f\}]$

Note that the edge fg is an SBL of F - N[c], but it is not an SBL of F.

Definition 11. Let F be a forest without isolated vertices. An edge uv such that uv is an SBL of a subgraph in a leaf-filtration \mathcal{F} of F is called a **hidden SBL** of F.

Using the definitions above we can describe the independence complex of forests as follows.

Theorem 12. Let F be a forest. Then Ind(F) is contractible if and only if F has isolated vertices or a hidden SBL. If $\operatorname{Ind}(F)$ is not contractible, then it is homotopy equivalent to a S^{q-1} dimensional sphere, where q is the length of any leaf-filtration of *F*.

Moreover, if F has a hidden SBL, then any leaf-filtration of F contains a subgraph with an SBL.

pd(G) = pd(R/I(G)) and depth(G) = depth(R/I(G))

References

[1] D. Bayer, H. Charalambous, and S. Popescu. Extremal betti numbers and applications to monomial ideals. *Journal* of Algebra, 1998.

[2] W. Bruns and J. Herzog. Cohen-Macaulay Rings. Cambridge University Press, 1998.

[3] K. Kawamura. Independence complexes and edge covering complexes via alexander duality. *The Electronic Journal* of Combinatorics, 18, 2011.

[4] J. Kim. The homotopy type of the independence complex of graphs with no induced cycles of length divisible by 3. European Journal of Combinatorics, 2022.

[5] M. Marietti and D. Testa. A uniform approach to complexes arising from forests. *The Electronic Journal of Combi*natorics, 2008.

[6] R. Meshulam. Domination numbers and homology. *Journal of Combinatorial Theory*, pages 321–330, 2003.

[7] W. Zhang and H. Wu. The betti number of the independence complex of ternary graphs. Journal of the European Mathematical Society, 2021.